期刊文献+

基于EOG的眼动信息提取与分类研究 被引量:4

Research on information extraction and recognition of the eye movements based on EOG
下载PDF
导出
摘要 基于眼电(Electro-oculogram,EOG)的人机交互系统(HCI)是生物电信号处理领域的研究热点之一。在研究眼动信息的基础上,提出了一种EOG扫视信号特征提取与分类算法,该算法提取扫视信号的线性预测(Linear Predictive Coding,LPC)系数,对其作差分运算获取一阶差分线性预测系数,与归一化极值作为组合特征参数,通过神经网络对样本信号分类。实验室环境下,采用所提该法对来自6名眼部功能均正常的受试者扫视样本分类,平均分类正确率超过92%。实验表明,该法能准确地描述EOG扫视信号,具有较高实用价值。 The research on human-computer interface (HCI) based on EOG is a hotspot in the field of bio-signal processing.Research on the basis of eye movements information,this paper presents a feature extraction and classification algorithm based on EOG saccadic signals,which extracts the saccadic signals' linear predictive coding (LPC) coefficients and then extracts first-order differential linear predictive coding coefficients and normalized extremum as the characteristic parameters.The sample signals are classified by an artificial neural network (ANN).Under the laboratory environment,the samples,got from six different subjects with normal eye function,are classified using the proposed algorithm,the average classification accuracy rate reaches more than 92%.The results show that the proposed algorithm can depict the EOG saccadic signals' features accurately and have practical use.
出处 《电子测量技术》 2010年第5期62-65,共4页 Electronic Measurement Technology
基金 国家自然科学基金资助项目(60771033) 博士点基金(200803570002)
关键词 人机交互系统 线性预测系数 归一化极值 神经网络 human-computer interface (HCI) linear predictive coding (LPC) coefficients normalized extremum artificial neural network (ANN)
  • 相关文献

参考文献12

  • 1BAREA R,BOQUETE L,MAZO M,et al.System for assisted mobility using eye movements based on electrooculography[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2002,10 (4):209-218.
  • 2CHEN Y L.Application of tilt sensors in human-computer mouse interface for people with disabilities[J].Neural Systems and Rehabilitation Engineering,IEEE Transactions on,2001,9:289-294.
  • 3KUMAR D,ERIC P.Classification of EOG for Human Computer Interface[C].Proceedings of the second Joint EMBS/BMES Conference,2002.64-67.
  • 4HORI J,SAKANO K,SAITOH Y.Development of Communication Supporting Device Controlled by Eye Movements and Voluntary Eye Blink[C].Proceedings of the 26th Annual International Conference of the IEEE EMBS,San Francisco,CA,USA,2004.4302-4305.
  • 5OSTER A,LICHTSTEINER P,DELBR  Ck,et al.A Spike-Based Saccadic Recognition System[J].IEEE Symp.on Circuits and Systems 2007.3083-3086.
  • 6CHEN YL,KUO TS,CHANG WH,et al.A novel position sensors-controlled computer mouse for the disabled[C].Engineering in Medicine and Biology Society,2000.Proceedings of the 22nd Annual International Conference of the IEEE,2000,3:2263-2266.
  • 7魏庆国,高小榕,王毅军,高上凯.基于多通道线性描述符的脑—机接口分类算法的研究[J].中国生物医学工程学报,2007,26(6):810-817. 被引量:2
  • 8赵力.语音信号处理[M].北京:机械工业出版社,2005.
  • 9赵莉,王行愚,王蓓.基于粗糙集理论和支持向量机的眼动位置信息提取[C].第十七届中国过程控制会议论文集,2006:86-90.
  • 10ZHAO L,WU X P,LI M,et al.Implementation of the EOG-Based Human Computer Interface System[C].Bioinformatics and Biomedical Engineering,The 2nd International Conference,2008.2188-2191.

二级参考文献42

共引文献41

同被引文献36

  • 1韩玉昌,任桂琴.儿童自我延迟满足的视觉认知过程[J].心理学报,2006,38(1):79-84. 被引量:12
  • 2高木干雄,下田阳久.图像处理技术手册[M].北京:科学出版社,2007.
  • 3李卫娜,侯文生,郑小林,彭承琳.基于Electrooculogram的眼动信息识别[J].仪器仪表学报,2007,28(8):1428-1433. 被引量:5
  • 4赫金,郑宝玉.自适应滤波器原理[M].4版,北京:电子工业出版社,2010:81-83.
  • 5DENGLY, HSUCL, LINT C, et al. EOG-based human-computer interface system development [J].Expert Systems with Applications, 2010, 37 (4): 3337-3343.
  • 6BULLING A, WARD J A, GELLERSEN H, et al, Eye movement analysis for activity recognition using electrooculography [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(4): 741- 753.
  • 7GANDHI T, TRIKHA M, SANTHOSH J, et al. Development of an expert multitask gadget controlled by voluntary eye movements [J-]. Expert Systems with Applications, 2010, 37(6): 4204-4211.
  • 8ESTRANY B, FUSTER P, GARCIA A, et al. Hu- man computer interface by EOG tracking [C]//Pro- ceedings of the 1st International Conference on Perva- sive Technologies Related to Assistive Environments. New York, USA: ACM, 2008: Article No. 96.
  • 9ESTRANY B, FUSTER P, GARCIA A, et al. EOG signal processing and analysis for controlling computer by eye movements [C] // Proceedings of the 2nd Inter- national Conference on Pervasive Technologies Related to Assistive Environments. New York, USA: ACM, 2009: Article No. 18.
  • 10COUGHLIN M J. Calibration of two dimensional sac- cadic electro-oculograms using artificial neural net- works [M]. Brisbane, Australia: Griffith University, 2003: 115-117.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部