摘要
讨论了Banach空间中一类具有奇异性脉冲微分方程的边值问题,利用M(o|¨)nch不动点定理,在与相应的线性算子谱半径有关的条件下,获得了该边值问题正解的存在性.
This paper deals with a class of singular boundary value problems of impulsive differential equations. Using H.Monch fixed point theorem, we obtain the existence of solutions for such problems under some conditions concerning the spectral radius corresponding to the relevant linear operators.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第11期186-191,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(10971179)
关键词
奇异方程
谱半径
不动点
边值问题
正解
singular equation
spectral radius
fixed point
boundary value problem
positive solution