期刊文献+

推广的Dempster合成规则在航迹关联中的应用 被引量:1

Application of the extended Dempster combination rule in track-to-track correlation
原文传递
导出
摘要 目前已有的航迹关联方法虽然能很好地解决二传感器二目标或者二传感器多目标航迹融合问题,但处理多传感器多目标航迹关联问题时效果较差.因航迹关联问题实际上是判决融合问题,作者提出用Dempster合成规则的思想来解决之,但必须要对合成规则有新的推广.推广后的方法不仅能解决二传感器航迹关联问题,而且还能解决多传感器航迹关联问题.当传感器证据相互冲突或不够准确的时候,经典的Dempster合成规则无法应用,而推广的Dempster合成规则可解决该问题.最后作者给出了一个四传感器二航迹关联的例子,来解释和说明推广的Dempster合成规则在航迹关联中的应用.计算机仿真结果说明推广的Dempster合成规则比经典的Dempster合成规则更适用. At present, the track correlation methods perform well in solving two sensors two targets or two sensors more targets track fusion, but work badly in multi-sensor multi-target track correlation. Since the track correlation problem is actually a decision fusion issue, Dempster combination rule can be used to solve such track correlation problem. However, to be suitable to solve the track correlation problem, new extension to the classical Dempster combination rules is necessary. This extended method can solve not only the problem of two sensors track correlation, but also the problem of multi-sensor track correlation. In this paper, when the sensor evidences are conflicted mutually or not quite accurate, the authors propose the extended Dempster combination rule to handle the above issue. Finally, a exampie of 4 sensors 2 target trajectories correlation is given to explain the application of the extended Dempster rule in track correlation and computer simulation results show that the extended Despmster rule performs better than the classical Despmster rule does.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期447-450,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(60574032) "836"基金(2006AA12A104)
关键词 数据融合 航迹关联 Dempster合成规则 推广的Dempster合成规则 传感器 data fusion, track correlation, Dempster combination rule, extended Dempster rule, sensor
  • 相关文献

参考文献11

  • 1Smets P.Belief functions and the transferable belief model[EB/OL].http:∥sedok.narod.ru/s_files/poland/102.pdf.2002.
  • 2Smets P.The imprecise probabilities[M].Projects,2000.
  • 3Dempster A P.Upper and lower proba induced by a Malti-Valued mapping[J].Ann Mathematical Statistics,1967,38:325.
  • 4Shafer G A.Mathematical theory of evidence,princeton[M].Princeton:Princeton University Press,1976.
  • 5Walley P.Measures of uncertainty in expert system[J].Artificial Intellegince,1996,83(1):1.
  • 6Dubois D,Prade H.On the unicity of Dempster's rule of combination[J].International Journal of Intelligent Systems,1986,1:133.
  • 7Good I J.Probability and the weighing of evidence[M].London:Griffi London,1950.
  • 8Halpern J,Fagin R.Two views of belief:belif as generalized probability and belief as evidence[J].Artifical Intelligence,1992,54:273.
  • 9Smets P.Belief functions and generalized Bayes theorem[R].The Second IFSA Congress.Japan Tokyo:1978:404.
  • 10YU M Z,Bentabet L.Automatic determination of mass functions in Dempster-Shafer theory using fuzzy C-means image segmentation[J].Opt Eng,2002,41(4):760.

共引文献6

同被引文献15

  • 1何友;王国宏;陆大金;彭应宁.多传感器信息融合及应用[M]北京:电子工业出版社,2007128-183.
  • 2SINGER R A,KANYUCK A J. Computer control of multiple site track correlation[J].Automation,1971,(04):455-463.
  • 3BAR-SHALOM Y. On the track-to-track correlation problem[J].IEEE Transactions on Automatic Control,1981,(02):571-572.doi:10.1109/TAC.1981.1102635.
  • 4TIAN Xin,BAR-SHALOM Y. Sliding window test vs single time test for track-to-track association[A].Cologne,Germany,2008.1-8.
  • 5KAPLAN L M,BLAIR W D. Assignment costs for multiple sensor track-to-track association[J].IEEE Transactions on Aerospace and Electronic Systems,2008,(02):655-677.
  • 6LIU Wanquan,XIN Yulin,GUO Shijian,CHEN Zengping. Effects of the crosscorrelation on track-to-track association[A].Jilin,China,2011.535-538.
  • 7FERRY J P. Exact bias removal for the track-to-track association problem[A].Seattle,USA,2009.1642-1649.
  • 8BAR-SHALOM Y,CHEN H. Multisensor track-to-track association for tracks with dependent errors[J].Journal of Advances in Information Fusion,2006,(01):3-14.
  • 9CHEN Huimin,CHEN Genshe,BLACH E P,SCHUCK T M. Robust track association and fusion with extended feature matching[M].Beilin:Springer-Verlag,2009.319-354.
  • 10MORI S,CHONG C Y,CHANG K C. Performance prediction of feature aided track-to-track association[A].Chicago,IL,2011.1-8.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部