期刊文献+

采用盲源提取和后小波滤波的胎儿心电图提取 被引量:11

Extraction of FECG using blind source extraction and post-wavelet de-noising
下载PDF
导出
摘要 胎儿心电图能够提供有关胎儿健康的信息,帮助确定胎儿是否有疾病,在临床上具有很重要的意义。将心电图仪的电极放置到孕妇体表,获取来自母体内部的心电信号,该信号是母体心电图与胎儿心电图的混合。目前主要有两种方法可以通过处理混合信号,获得胎儿心电图。其中,采用盲源提取的方法可以用较小的运算量获得胎儿心电图,但这种方法提取的胎儿心电图容易受到噪声的污染。而在小波域进行盲源分离,可以分离出较为纯净的胎儿心电图,该方法的缺点是运算量大。提出了一种新的胎儿心电提取方法,该方法首先利用盲源提取算法从采集到的心电信号中提取出受到噪声污染的胎儿心电图,然后再利用小波滤波滤除噪声,获取较为纯净的胎儿心电图。该方法既具有较小的运算量,又可以获得较好的提取性能。合成心电数据仿真和实际胎儿心电图提取试验均验证了该方法的有效性。 Fetal electrocardiogramcan (FECG) can provide information about the health and possible diseases of the fetus. So the extraction of FECG is of vital importance from clinical point of view. The ECG signals can be obtained by putting electrodes on maternal body and the signals are the mixture of maternal ECG (MECG) and FECG. Through processing the mixture signals, the FECG can be extracted using two methods at present. The first simple method is blind source extraction (BSE), which needs less computation, but the extracted FECG is corrupted by noise easily. And the second method is blind source separation in wavelet domain, which means the BSS algorithm is performed with the wavelet coefficients of the mixture signals. This method has better performance but needs more complicated computation. A new fetal ECG extraction scheme is proposed within which the fetal ECG corrupted by noise is extracted using BSE and then the extracted signal is filtered in wavelet domain, and clearer FECG signal is obtained. This scheme can get good extraction performance with less computation, which is confirmed by computer simulation on artificial data and experiments on real-world fetal ECG data.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第5期1096-1101,共6页 Chinese Journal of Scientific Instrument
关键词 盲源提取 小波滤波 胎儿心电图 母体心电图 blind source extraction wavelet filter fetal electrocardiogramcan (FECG) matal electrocardiogramcan (MECG)
  • 相关文献

参考文献13

  • 1PING G, EE-CHIEN C, WYSE L. Blind separation of fetal ECG from single mixture using SVD and ICA [ C]. The Fourth Pacific Rim Conference on Multimedia. Proceedings of Information, Communications and Signal Processing, Bangkok, Thailand, 2003 (4) : 1418-1423.
  • 2BARROS A K. Extracting the fetal heart rate variability using a frequency tracking algorithm [ J ]. Neurocomputing, 2002, 49 (1-4) : 279-288.
  • 3YE Y, ZHANGZH L, ZENGJZH, et al. A fast and adaptive ICA algorithm with its application to fetal electrocardiogram extraction [ J ]. Applied Mathematics and Computation, 16 ( 2008 ) : 181 -192.
  • 4SHI ZH W, JIANG ZH G, ZHOU F G. A fixed point algorithm for blind source separation with nonlinear autocorrelation[ J ]. Journal of Computational and Applied Mathematics, 2008 : 1-8.
  • 5BARROS A K, CICHOCKI A, Ohnishi N. Extraction of statistically dependent sources with temporal structure [ A]. Brazil, 2000 Proceedings. Sixth Brazilian Symposium on Neural Networks[C ] , 2000 : 61-65.
  • 6徐文浩,马明,张庆海.基于盲源分离和小波滤波的胎儿心电检测[J].国外电子测量技术,2009,28(1):13-15. 被引量:3
  • 7ZHANG Z L, ZHANG Y. Extraction of a source signal whose kurtosis value lies in a specific range, Neurocomputing[ J]. 2006,69 : 900-904.
  • 8SHI ZH W, ZHANG CH SH. Semi-blind source extraction for fetal electrocardiogram extraction by combining non-Gaussianity and time-correlation [ J ]. Neurocomputing . 2007,70 : 1574-1581.
  • 9JAFARI M G, CHAMBERS J A. Fetal electrocardiogram extraction by sequential source separation in the wavelet domain[ J]. IEEE Transactions on Biomedical Engineering, March 2005,52 ( 3 ) :390-400.
  • 10SHI ZH W, ZHANG D, ZHANG CH SH. Macbse: Extracting signals with linear autocorrelations. Neurocomputing[J]. 2008,71 : 1082-1091.

二级参考文献23

  • 1李鸿燕,王华奎.独立分量分析在混叠通信信号分离中的应用[J].仪器仪表学报,2006,27(z1):664-665. 被引量:9
  • 2金友渔.ALCAR模型与叠加过程的分解[J].信号处理,1995,11(2):66-72. 被引量:3
  • 3陈滨宁,张贤达.高斯ARMA噪声中非因果非最小相位系统的辨识[J].电子学报,1996,24(4):24-28. 被引量:5
  • 4HYVARINEN A, OJA E. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997,9 (7) : 1483-1492.
  • 5ZHANG Z L,YI Z. Extraction of temporally correlated sources with its application to non-invasive fetal electrocardiogram extraction [ J ]. Neurocomputing, 2006,69(7-9) : 894-899.
  • 6HYVARINEN A,KARHUNEN J,OJAE独立成分分析[M].周宗潭,董国华,译.北京:电子工业出版社,2007:120-143.
  • 7CICHOCKI A,AMARI S. Adaptive blind signal and image processing: learning and applications[M]. New York: John Wiley & Sons, Ltd, 2002 : 292-356.
  • 8BELOUCHRANI A, ABED-MERAIM K, CARDOSO J F. Second-order blind separation of temporally correlated sources[C]. Cyprus:Proc. Int. Conf. on Digital Signal, 1993. 346-351.
  • 9胡广书.现代信号处理[M].北京:清华大学出版社,2004:11.
  • 10ZARZOSO V, NANDT A K, BACHARAKIS P, et al. Maternal and fetal ECG separation using blind source separation methods[ J]. Math Appl Med Biology, 1997, 14 ( 3 ) : 207 -225.

共引文献15

同被引文献127

引证文献11

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部