期刊文献+

基于改进的VSM的词义排歧策略

Word sense disambiguation based on improved vector space model
下载PDF
导出
摘要 为了提高词义排歧的准确率,提出了一种基于改进的向量空间模型(VSM)的词义排歧策略,该模型在提取特征向量的基础上,考虑了语法、词形、语义等因素,计算语境相似度,并引入搭配约束,改进了算法的效果,在开放测试环境下,词义标注正确率可达到80%以上。实验结果表明,该方法对语境信息的描述更加全面,有利于进一步的语义分析。 To increase the word disambiguation accuracy,a word disambiguation solution based on improved Vector Space Model (VSM) was presented.Since the algorithm takes account of grammar,morphology and semantic and calculates the context similarity requiring the character vector abstraction,the algorithm is able to achieve better results by using collocation constraint.The open test precision can reach 80%.The result shows that the method can fully describe the features of context,and is beneficial to further semantic parsing.
出处 《计算机应用》 CSCD 北大核心 2010年第6期1671-1672,1693,共3页 journal of Computer Applications
关键词 向量空间模型 词义排歧 语境相似度 特征向量 词语搭配 Vector Space Model (VSM) word disambiguation context similarity character vector word collocation
  • 相关文献

参考文献8

  • 1YING DING.IR and AI:Using co-occurrence theory to generate lightweight ontologies[C]//Proceedings of 12th Intemational Workshop on Database and Export Systems Applications.Washington,DC:IEEE,2007,9:961-965.
  • 2吴光远,何丕廉,曹桂宏,聂颂.基于向量空间模型的词共现研究及其在文本分类中的应用[J].计算机应用,2003,23(z1):138-140. 被引量:23
  • 3ATLAM E-S.A new method for construction field association terms using co-occurrence words and declinable words information[C]//Proceedings of 2002 IEEE International Conference on Systems,Man and Cybernetics.Washington,DC:IEEE,2002,4:95-100.
  • 4郭池,陈家骏,王启祥.一种基于语料库的词义消歧策略[J].计算机工程与应用,2003,39(35):33-36. 被引量:4
  • 5王荣波,池哲儒.基于词类串的汉语句子结构相似度计算方法[J].中文信息学报,2005,19(1):21-29. 被引量:28
  • 6刘群,李素建.基于《知网》的词汇相似度计算[EB/OL].[2002-10-10].hnp://www.kecnage.com.
  • 7CHE WANXENG,LIU TING,LI SHENG.A new Chinese nature language understanding architecture based on muhilayer search mechanism[C]//The Third SIGHAN Workshop on Chinese Language Processing.Barcelona,Spain:[s.n.],2004:134-400.
  • 8TURNEY P D,LITTMAN M L.Measuring praise and criticism:Inference of semantic orientation from aasociation[J].ACM Transactions on Information Systems,2003,21(4):315-346.

二级参考文献11

  • 1[3]Han EH,Karypis G.Centroid-Based Document Classification:Analysis & Experimental Results[ EB/OL]. http://www -users. itlabs.umn. edu/~ karypis/publications/data - mining. html, 2000.
  • 2[4]Buzydlowski JW, Whie HD. Term Co-occurrence Analysis as an Interface for Digital Libraries[ A]. JCDL - The First ACM + IEEE Joint Conference on Digital Libraries[C]. 2001.
  • 3[5]Schuetze, Hinrich. Document information retrieval using global word co - occurrence patterns[ EB/OL]. http://www. delphion. com/details?pn10 = US05675819, 1997.
  • 4M. Carl.Recent Research in the Field of Example-Based Machine Translation[A]. CICLing 2001 ,LNCS 2004.
  • 5W. John Hutchins. Machine Translation: a brief history. Concise history of the language sciences: from the Sumerians tothe cognitivists[M]. Oxford:Pergamon Press, 1995.
  • 6Sumita,E.and H.Iida. Experiments and Prospects of.Example-Based Machine Translation[A]. Proceedings of 29th ACL Meeting[C]. Berkeley, 1991,185 - 192.
  • 7K. Chidananda Gowda and E. Diday. Symbolic Clustering Using a New Similarity Measure[J]. IEEE. Transactions on Systems, Man, and Cybernetic, 1992,22(2).
  • 8Federica Mandreoli, Riccardo Martoglia, and Paolo Tiberio. Searching Similar(Sub) Sentences for Example-Based Machine Translation[ A ]. In: Atfi del Decimo Convegno Nazionale su Sistemi Evoluti per Basi di Dati(SEBD 2002 ), Isola d'Elba, Italy, 2002.
  • 9黄萱菁,吴立德.基于向量空间模型的文档分类系统[J].模式识别与人工智能,1998,11(2):147-153. 被引量:24
  • 10陈浪舟,黄泰翼.一种新颖的词聚类算法和可变长统计语言模型[J].计算机学报,1999,22(9):942-948. 被引量:17

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部