期刊文献+

一类时滞微分方程非常数周期解的存在性及其个数估计 被引量:1

Existence and estimate of the number of nontrivial periodic solutions for delay differential equations
下载PDF
导出
摘要 应用变分方法与无穷维空间Morse理论研究方程=g(x(t-r)),得到上述微分差分方程以4r为周期的非常数周期解存在性的条件,并且给出其个数的下界.因此为研究含有时滞的微分系统周期解的存在性提供了一种新方法. In this paper, by using variational methods and infinite dimensional Morse theory, a sufficient condition is obtained for the existence of multiple nontrivial 4r-periodic solutions to the following delay differential equations x=g(x(t-r)).A lower bound of the number of periodic solutions is also given. As a consequence of this paper, a new method is introduced for investigating the periodic solutions of delay differential equations.
作者 郭志明
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2010年第2期134-140,共7页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10871053) 广州市教育局科技计划项目(62006)
关键词 时滞微分方程 周期解 MORSE理论 非共振 delay differential equations periodic solutions Morse theory nonresonance
  • 相关文献

参考文献3

二级参考文献3

  • 1葛渭高,J Beijing Inst Tech,1993年,2卷,1期,5页
  • 2温立志,数学年刊.A,1989年,10卷,3期,289页
  • 3葛渭高

共引文献13

同被引文献13

  • 1周宗福.一类具分布时滞的退化微分系统的周期解[J].应用数学,2005,18(3):476-483. 被引量:5
  • 2Dai L. Singular Control Systems[M]. New York: Springer, 1989.
  • 3Campbell S L. Singular Systems of Differential Equations[M]. San Francisco: Pitman Advanced Publishing Program, 1980.
  • 4Peter K, Volker M. Differential Algebraic Equations[M]. Berlin: European Mathematical Society, 2006.
  • 5Rosenbrock H H. Structural properties of linear dynamical systems[J]. International Journal of Control, 1974, 20(2): 191-202.
  • 6Campbell S L, Linh V H. Stability criteria for differential-algebraic equations with multiple delays and their numerical solutions[J]. Applied Mathematics and Computation, 2009, 208(2): 397-415.
  • 7Xie X S, Liu Y Q. General characteristic equation and stability of linear singular systems of differential equation with delay[J]. Journal of South China University of Technology, 1995, 23(6): 111-117.
  • 8秦元勋,等.带有时滞的动力系统的稳定性(第2版)[M].北京:科学出版社,1989.
  • 9Gantmacher F R. The Theory of Matrix[M]. New York: Chelsea, 1974.
  • 10张棣,赵晓强,高占海.空间周期解的理论与应用[J].南京大学学报(自然科学版),1987,21(1):37—49.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部