期刊文献+

广义p调和映照正则性的一个注记

A remark on the regularity of generalized p harmonic maps
下载PDF
导出
摘要 广义调和映照(p=2)属于W^(1,q),q>1且其BMO范数很小的时候的正则性由Strzelecki得到.对于广义p调和映照,文中证明了,当p和2很接近的时候,类似的结果也对.其证明主要运用了BMO和H^1的对偶,Hodge分解的稳定性及反Hlder不等式. The regularity of generalized harmonic maps (p = 2) in W^1,q, q 〉 1 with its BMO norm small was obtained by P Strzelecki. For generalized p harmonic maps, when p is closed to 2, the similar result is proved. The proofs rely on the duality of Hardy space and BMO combined with Lp stability of the Hodge decomposition and reverse HSlder inequalities.
作者 蒋先江
机构地区 宁波大学理学院
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2010年第2期214-218,共5页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10801080) 宁波市自然科学基金(2008A610014)
关键词 广义p调和映照 正则性 generalized p harmonic maps regularity
  • 相关文献

参考文献16

  • 1Evans L C.Partial regularity for stationary harmonic maps into spheres[J].Arch Rational Mech Anal,1991,116:101-113.
  • 2Fuchs M.Some regularity theorems for mappings which are stationary points of the penergy functional[J].Analysis,1989,9:127-143.
  • 3Fuchs M.p-harmonic obstacle problems.I:Partial regularity theory[J].Ann Mat Pura Appl,1990,156:127-158.
  • 4Helein F.Harmonic Maps,Conservation Laws and Moving Frames,2nd edition[M].Cambridge:Cambridge University Press,2002.
  • 5Rivi(e)re T.Everywhere discontinuous harmonic maps into spheres[J].Acta Math,1995,175:197-226.
  • 6Almeida L.The regularity problem for generalized harmonic maps into homogeneous spaces[J].Calculus of Variations and Partial Differential Equations,1995,3:193-242.
  • 7Stein E M,Weiss G.Introduction to Fourier Analysis on Euclidean Spaces[M].Princeton:Princeton University Press,1971.
  • 8Ge Yuxin.A remark on generalized harmonic maps into spheres[J].Nonlinear Anal,1999,36:495-506.
  • 9Moser R.An ε-regularity result for generalized harmonic maps into spheres[J].Electron J Differential Equations,2003(1):1-7.
  • 10Strzelecki P.On regularity of generalized sphere-valued p-harmonic maps with small mean oscillations[J].Manuscripta Math,2003,112:473-487.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部