期刊文献+

非比例阻尼结构体系的快速随机分析 被引量:1

Fast Stochastic Analysis for Non-proportionally Damped Structure
原文传递
导出
摘要 作者基于结构动力学、虚拟激励法和拟力法的基本思想推导了一种适用于非比例阻尼结构体系的新型快速随机分析方法。在所提出的新方法中,非比例阻尼结构的动力平衡方程以迭代的形式列出,基于此迭代方式,避免了大型矩阵的求逆运算。此外,与前人研究工作不同,新方法不需要求解结构体系的复数特征值,避免了复数运算。同时,作者指出了迭代方法收敛的充分条件,并研究了如何优化迭代矩阵来实现迭代过程的快速收敛。最后,作者进一步分析该方法的计算效率。 Fundamental principles from structural dynamics,pseudo excitation method and pseudo force method are used to develop a new fast stochastic method for seismic analysis of the non-proportionally damped structure.In the new method,the dynamic equilibrium equation of non-proportionally damped structure is expressed in the iteration form,based on which the inverse operation of the matrices is avoided.Moreover,the new method also does not need the solution of any complex eigenvalue problem,in contrast to other methods found in the literature.Sufficient condition for the convergence of the iterative method has been provided,and the approach to optimize the iterative matrices for rapid convergence is researched.Finally,the computation efficiency of the method is examined.
作者 国巍 李宏男
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第9期31-34,44,共5页 Journal of Wuhan University of Technology
基金 教育部创新团队资助项目(IRT0518) 高等学校学科创新引智计划项目(B08014)
关键词 非比例阻尼 随机分析 虚拟激励法 拟力法 收敛条件 non-proportional damping stochastic analysis pseudo excitation method pseudo force method convergence condition
  • 相关文献

参考文献15

  • 1Foss K A. Coordinates Which Uncouple the Equation of Motion of Damped Linear Dynamic Systems[J]. Journal of Applied Mechanics, 1958, 25(1) :361-364.
  • 2Lou M L, Duan Q, Chen G D. Modal Perturbation Method and Its Applications in Structural Systems[J]. Journal of Engineering Mechanics, 2003, 169(8) : 935-943.
  • 3Karen K, Mohsen G A. New Approaches for Non-classically Damped System Eigenanalysis[J ]. Earthquake Engineering and Structural Dynamics, 2005, 34(9) : 1073-1087.
  • 4Fernando C, Maria J E. Computational Methods for Complex Eigenproblems in Finite Element Analysis of Structural Systems with Viscoelastic Damping Treatments[J].Computer Methods in Applied Mechanics and Engineering, 2006, 195 (44-47) : 6448-6462.
  • 5He J J, Jiang J S, Xu B. Modal Reanalysis Methods for Structural Large Topological Modifications with Added Degrees of Freedom and Non-classical Damping[J ]. Finite Elements in Analysis and Design, 2007, 44 (1-2) :75-85.
  • 6Bilbao A, Aviles R, Agirrebeitia J, et al. Proportional Damping Approximation for Structures with Added Viscoelastic Dampers[J]. Finite Elements in Analysis and Design, 2006, 42(6):492-502.
  • 7Kim C W, Bennighof J K. Fast Frequency Response Analysis of Large-scale Structures with Non-proportional Damping[J]. International Journal for Numerical Methods in Engineering, 2007, 69(5) :978-992.
  • 8Lin J L, Tsai K C. Simplified Seismic Analysis of Nne-way Asymmetric Elastic Systems with Supplemental Damping[J]. Earthquake Engineering and Structure Dynamics, 2007, 36(6):783-800.
  • 9Li H, Du Y F. Study on Torsion Coupled Response of Non-proportionally Damped Eccentrically Isolated Structure Under Earthquake[C]//The 14th World Conference on Earthquake Engineering. Beijing: [ s. n. ], 2008:140-146.
  • 10Udwadia F E, Kumar R. Convergence of Iterative Methods for Non-classically Damped Dynamic Systems[J]. Applied Mathematics and Computation, 1994, 61(1):61-97.

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部