期刊文献+

含分数阶导数型阻尼的随机系统响应的统计模拟法

Statistical Simulation Method for the Response of Stochastic Systems Contained Fractional Derivatives
原文传递
导出
摘要 讨论了含分数阶导数型阻尼的随机系统响应问题的统计模拟方法。该方法的核心是利用Riemann-Liouville分数阶导数定义中核函数的特性,建立分数阶导数的近似计算公式。算例表明,该方法具有收敛快、精度高且计算效率高。 A statistical simulation method for the response of stochastic systems contained fractional derivative damping is discussed in this paper.The core of this method is established a numerical algorithm directly from the Riemann-Liouville fractional derivative definition by taking advantage of the features of its integrand kernel.The sample results show that the proposed method possesses the advantages of fast convergence,higher accuracy and efficiency.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第9期45-47,共3页 Journal of Wuhan University of Technology
基金 华侨大学科研启动金(09BS622)
关键词 分数阶导数 统计模拟法 随机系统 fractional derivative statistical simulation method stochastic system
  • 相关文献

参考文献7

  • 1Pcxtlubny I. Fractional-order Syslems and PI^λD^u-controilers[J].IEEE Transtation Automatical Control, 1999(44) :208-213.
  • 2Chen W. An Intuitive Study of Fractional Derivative Modeling and Fractional Quantum in Soft Matter[.J ]. Journal of Vibration and Control, 2008(14) : 1651-1657.
  • 3Tseng Ch Ch. Design of FIR and I IR Fractional order Simpson Digital Integrators[ J ]. Signal Process, 2007 (87) : 1045-1057.
  • 4Spanos P D, Zeldin B A. Random Vibration of Systems with Frequency-dependent Parameters or Fractional I)erivatives[J]. ASCE Journal of Engineering Mechanics, 1997(123) :290-292.
  • 5Agrawal O P. Stochastic Analysis of Dynamics Systems Containing Fractional Derivatives [J ]. Journal of Sound and Vibration, 2001 (247) : 927-938.
  • 6Huang Z L, Jin X L. Response and Stability of a SDOF Strongly Nonlinear Stochastic System with Light Damping Modeled by a Fractional Derivative[J]. Journal of Sound and Vibration, 2009(319):1121-1135.
  • 7Chen L C, Zhu W Q. Stochastic Averaging of Strongly Nonlinear Oscillators with Small Fractional Derivative Damping Under Combined Harmonic and White Noise Excitations[J]. Nonlinear Dynamics, 2009(56) :231-241.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部