期刊文献+

采用增量型非负矩阵分解建模的目标跟踪算法 被引量:1

An Algorithm for Object Tracking Based on Incremental Non-negative Matrix Factorization
下载PDF
导出
摘要 建立鲁棒的外观模型是目标跟踪中的关键问题,为此提出一种基于增量型非负矩阵分解的目标跟踪算法.首先根据转移概率模型在当前帧中预测得到一组图像样本;随后利用非负矩阵分解获取样本在子空间中的坐标向量;在此基础上计算样本与前一帧视频中目标图像在低维坐标向量上的相关性,以具有最大相关性的图像样本作为目标在当前帧中的图像区域;最后以增量的方式完成子空间的在线更新,提高了外观模型的更新效率,且所要求的存储空间大小恒定.实验结果表明,该算法对目标物的外观变化具有良好的自适应性,能够在视频序列中对目标进行稳定的跟踪. As it is crucial for object tracking to establish a robust appearance model,an algorithm for object tracking based on incremental non-negative matrix factorization is presented.Firstly,resorting to a transition probability model,a set of image patches are predicated as candidates for object image in the current frame,and then non-negative matrix factorization is used to obtain the low-dimensional coordinate vectors of the image patches.With the coordinate vectors,the associations between image patches and object image in the previous frame are evaluated,and the image sample with the maximum association is regarded as the image region of the moving object in the current frame.Finally,the subspace of object images is updated incrementally,thus the efficiency is improved in addition to a constant storage requirement.Experimental results show that our algorithm is able to adapt to variations in appearance of objects well,and it can track objects more steadily.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第6期972-977,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展计划项目(2009CB320804)
关键词 增量型非负矩阵分解 目标跟踪 相关性 子空间模型 incremental non-negative matrix factorization object tracking association subspace model
  • 相关文献

参考文献13

  • 1Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 2Wang H,Suter D,Schindler K,et al.Adaptive object tracking based on an effective appearance filter[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(9):1661-1667.
  • 3张笑微,周建雄,师改梅,路锦正,骆云志,吕卫强.融合结构信息的粒子滤波均值偏移跟踪算法[J].计算机辅助设计与图形学学报,2008,20(12):1583-1589. 被引量:9
  • 4Avidan S.Ensemble tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(2):261-271.
  • 5Grabner M,Grabner H,Bischof H.Learning features for tracking[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis:IEEE Computer Society Press,2007:1-8.
  • 6Grabner H,Bischof H.On-line boosting and vision[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York:IEEE Computer Society Press,2006:260-267.
  • 7Black M J,Jepson A D.EigenTracking:robust matching and tracking of articulated objects using a view-based representation[J].International Journal of Computer Vision,1998,26(1):63-84.
  • 8Ho J,Lee K C,Yang M H,et al.Visual tracking using learned linear subspaces[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Computer Society Press,2004:782-789.
  • 9Li Y M.On incremental and robust subspace learning[J].Pattern Recognition,2004,37(7):1509-1518.
  • 10Ross D A,Lim J,Lin R S,et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision,2008,77(1):125-141.

二级参考文献19

  • 1张波,田蔚风,金志华.Joint tracking algorithm using particle filter and mean shift with target model updating[J].Chinese Optics Letters,2006,4(10):569-572. 被引量:12
  • 2Perez P, Vermaak J, Blake A. Data fusion for visual tracking with particles [J]. Proceedings of the IEEE, 2004, 92(3): 495-513.
  • 3Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4) : 1-14.
  • 4Nummiaro K, Koller Meier E, Van Gool L. An adaptive color based particle filter [J]. Image and Vision Computing, 2003, 21(1): 99-110.
  • 5Loza A, Mihaylova L, Canagarajah N, et al. Structural similarity-based object tracking in video sequences [C] // Proceedings of the 9th International Conference on Information Fusion, Florence, 2006:1-6.
  • 6Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(2):174-188.
  • 7Comaniciu D, Ramesh V, Meer P. Kernel based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 8Gordon N J, Salmond D J, Smith A F M. Novel approach to non-linear and non-Gaussian Bayesian state estimation [J]. lEE Proceedings F Radar & Signal Processing, 1993, 140 (2):107-113.
  • 9Carpenter J, Clifford P, Fearnhead P. Improved particle filter for nonlinear problems[J]. IEE Proceedings of Radar, Sonar & Navigation, 1999, 146(1): 2-7.
  • 10Julier S, Uhlmann J, Durrant Whyte H F. A new method for nonlinear transformation of means and covariance in filters and estimators [J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.

共引文献29

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部