期刊文献+

活性氧在气孔运动中的作用 被引量:4

The role of reactive oxygen species in stomatal movement
原文传递
导出
摘要 水分代谢是植物基础代谢的重要组成部分,气孔开关精细地调节着植物水分散失和光合作用。气孔运动受到多种因子的调控,保卫细胞内大量的第二信使分子是响应外界刺激、调节保卫细胞代谢方式、改变保卫细胞水势进而引起气孔开关的重要功能组分。细胞内的活性氧就是其中重要的成员之一。保卫细胞中的活性氧包括过氧化氢、超氧阴离子自由基和羟自由基等,这些活性氧可以通过光合作用、呼吸作用产生或通过专门的酶催化合成,在触发下游生理反应、完成信号转导后由专门的酶将其清除。在植物激素(脱落酸、水杨酸)、一氧化氮、质外体钙调素、细胞外ATP等因子调节气孔运动的过程中,活性氧都发挥了介导作用。该文对于近年来活性氧在气孔运动过程中发挥的作用方面的研究进展进行了综述。 Water metabolism is an important part of plant metabolism. Stomatal opening and closing modulate water loss and photosynthesis. Stomatal movement is regulated by many factors. Secondary messengers in guard cells are important signal transduction components, which respond to extracellular stimuli, modulating intracellular metabolism, regulating water potential and finally triggering stomatal movement. Reactive oxygen species (ROS) is one of these secondary messengers. There are three kinds of reactive oxygen species in guard cells: H2O2, superoxide and HO·. These ROS can be generated through photosynthetic or respiratory pathway, or be synthesized by special enzymes. Reactive oxygen species play a key role in stomatal movement, which are triggered by phytohormone (abscisic acid, salicylic acid), NO, apoplastic calmodulin, extracellular ATP, etc. In this paper, research progress about the role of ROS in stomatal movement was reviewed.
出处 《生命科学》 CSCD 北大核心 2010年第5期482-486,共5页 Chinese Bulletin of Life Sciences
基金 国家自然科学基金项目(30570152 30871297)
关键词 活性氧 保卫细胞 细胞信号转导 reactive oxygen species guard cell cell signal transduction
  • 相关文献

参考文献36

  • 1Schroeder JI, Allen G J, Hugouvieux V, et al. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52:627-58.
  • 2Blatt MR, Grabov A. Signal redundancy, gates and the integration in the control of ion channels for stomatal movement. J Exp Bot, 1997, 48:529-37.
  • 3Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55:373-99.
  • 4许树成,丁海东,桑建荣.植物细胞活性氧种类、代谢及其信号转导(英文)[J].云南植物研究,2007,29(3):355-365. 被引量:11
  • 5Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol, 2006, 141(2):391-6.
  • 6Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Mol Biol, 1999, 50:601-39.
  • 7Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol, 2000, 279 (6): L1005-28.
  • 8Potikha TS, Collins CC, Johnson DI, et al. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol, 1999, 119(3): 849-58.
  • 9Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 2007, 87(1): 245-313.
  • 10Kobayashi M, Ohura I, Kawakita K, et al. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell, 2007, 19 (3): 1065-80.

二级参考文献92

  • 1LIJIAXU,JIEWENLIU,DAYESUN.Immunoelectron microscopic localization of calmodulin in corn root cells[J].Cell Research,1993,3(1):10-10. 被引量:14
  • 2Allen R,1995.Dissection of oxidative stress tolerance using transgenic plants[J].Plant Physiol,107:1049-1054
  • 3Alvarez ME,Pennell RI,Meiker PJ et al.1998.Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity[J].Cell,92:773-784
  • 4Anderson JP,Badruzsaufari E,Schenk PM et al.2004.Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis[J].Plant Cell,16:3460-3479
  • 5Apostol I,Heinstein PF,Low PS,1989.Rapid stimulation of an oxidative burst during elicidation of cultured plant cells.Role in defense and signal transduction[J].Plant physiol,90:106-116
  • 6Asada K,Takahashi M,1987.Production and scavenging of active oxygen in photosynthesis[A].In:Kyle DJ et al.,eds,Photoinhibition (Topics in Photosynthesis)[M].Vol.9,227-287,Elsevier
  • 7Audenaert K,De Meyer GB,Hofte MM,2002.Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms[J].Plant Physiol,128:491-501
  • 8Babior BM,1999.NADPH oxidase:an update[J].Blood,93:1464-1476
  • 9Bartels D,Sunkar R,2005.Drought and salt tolerance in plants[J].Crit Rev Plant Sci,24:23-58
  • 10Beaudoin N,Serizet C,Gosti F et al.2000.Interactions between abscisic acid and ethylene signaling cascades[J].Plant Cell,12:1103-1115

共引文献24

同被引文献50

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部