期刊文献+

基于数据加权策略的模糊聚类改进算法 被引量:11

Improved Fuzzy Clustering Algorithm Based on Data Weighted Approach
下载PDF
导出
摘要 该文提出了一种数据指数加权的模糊均值聚类策略,引入了指数权因子和影响指数,使得可以在聚类过程中差异化处理各个数据。新策略和现有的Gustafson-Kessel(G-K)算法相结合,提出了一种新的模糊聚类算法DWG-K用于提高聚类质量和挖掘离群点。数据试验表明DWG-K在提高聚类质量方面优于现有的G-K;在离群点挖掘方面,DWG-K对离群点的判定是全局的,离群点的物理意义清楚,且计算效率明显高于当前广泛采用的基于密度的离群点挖掘算法。 A new data exponent weighted fuzzy clustering approach is proposed by introducing a set of exponent weighting factors and influence exponent,the new approach makes it possible to treat the data points discriminatively.The new approach is combined with the existing Gustafson-Kessel(G-K) algorithm and a new algorithm,DWG-K is presented.Numerical experiments show that the DWG-K is better than G-K in improving the quality of clustering,and in the outliers mining,DWG-K detects the outliers with the global view and the physical meaning of outliers is clearer,and moreover,the computational efficiency is significantly higher than the current widely used density-based method.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第6期1277-1283,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(50875169)资助课题
关键词 模糊聚类 数据加权策略 数据加权G-K 离群点挖掘 Fuzzy clustering Data weighted approach Data weighted G-K Outliers mining
  • 相关文献

参考文献11

  • 1Li Chao-shun,Zhou Jian-zhong,and Li Qing-qing.A fuzzy clustering algorithm based on mutative scale chaos optimization.Advances in Neural Networks.ISNN 2008,Berlin/Heidelberg:Springer.2008,5264:259-267.
  • 2Runkler T A and Katz C.Fuzzy clustering by particle swarm optimization.Proceedings of 2006 IEEE International Conference on Fuzzy Systems.Vancouver,BC,2006:601-608.
  • 3Chuang Keh-shih,Tzeng Hong-long,and Chen Sharon.Fuzzy c-means clustering with spatial information for image segmentation.Computerized Medical Imaging and Graphics.2006,30(1):9-15.
  • 4Cai Wei-ling,Chen Song-can,and Zhang Dao-qiang.Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation.Pattern Recognition,2007,40(3):825-838.
  • 5Pal N R and Bezdek J C.On cluster validity for the Fuzzy c-means Model.1EEE Transactions on Fuzzy Systems.1995,3(3):370-378.
  • 6Kamber M and Han Jia-wei.Data Mining:Concepts and Techniques.2rd edition.Singapore:Elsevier Press.2005:295-300.
  • 7Breunig M M,Kriegel Hans-peter,and Raymond T N,et al..LOF:Identifying density-based local outliers.Proceedings of ACM SIGMOD International Conference on Management of Data,Dallas,Texas:ACM Press.2000,29:93-104.
  • 8Cao Hui,Si Gang-quan,Zhu Wen-zhi,and Zhang Yan-bin.Enhancing effectiveness of deusity-based outlier mining.International Symposiums on Information processing,Moscow,May 23-25,2008.
  • 9Ghoting A,Parthasarathy S,and Otey M E.Fast miniug of distance-based outliers in high-dimensional dataset.Data Mining Knowledge Discovery,2008,16(3):349-364.
  • 10Weng Xiao-qing and Shen Jun-yi.Detecting outlier samples in multivariate time series dataset.Knowledge-Based Systems,2008,21(8):807-812.

同被引文献100

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部