期刊文献+

直接线性图嵌入算法及其在人脸识别中的应用 被引量:2

A Direct LGE Algorithm and Its Application to Face Recognition
下载PDF
导出
摘要 图嵌入算法使用无向有权图来描述数据集的流形结构,目前许多流形学习算法都可统一到这个框架下。线性图嵌入算法(LGE)在高维小样本应用中往往会遇到的奇异值问题,因此需把数据集预先投影到PCA子空间,往往会丢失了一些有用的信息。本文提出了一种直接的线性图嵌入算法(DLGE),可直接从原始数据集中提取特征。此外DLGE算法相对于基于迭代的正交化算法,在最小二乘意义下对截断的征向量进行正交化处理,计算简便有效。在多个人脸数据库库上的仿真结果表明,相对于传统算法,DLGE算法具有更强的人脸表征能力,更好的分类性能,且更加鲁棒。 The algorithms of Graph Embedding model the manifold of data set by an undirected weighted graph.Some manifold learning algorithms can be unified by this framework according to the respective weighted matrix.For the small sample size problem,Linearization of Graph Embedding(LGE) needs to project the data to the PCA subspace.In this paper,a Direct LGE(DLGE) algorithm is proposed which can directly extract features from the data set.Moreover,DLGE employs the least-squares orthogonalization for the preserving feature vectors.The simulation results on several face databases show that DLGE has better ability for face representation,and also demonstrate the effectiveness and robustness of our proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第6期1311-1315,共5页 Journal of Electronics & Information Technology
基金 国家973计划项目(2006CB303105) 国家自然科学基金(60801053) 北京市优秀博士学位论文专项资金(YB20081000401) 北京市自然科学基金(4082025) 高等学校博士点新教师基金(20070004037)资助课题
关键词 图嵌入 人脸识别 线性图嵌入 正交化 Graph embedding Face recognition Linear graph embedding Orthogonalization
  • 相关文献

参考文献15

  • 1Seung H Sebastian and Lee Daniel D.The manifold ways of perception[J].Science,2000,290(5500):2268-2279.
  • 2Turk M and Pentland A P.Face recognition using eigenfaces[C].IEEE Conf.Computer Vision and Pattern Recognition,Maui,HI,USA,Jun.3-6,1991:586-591.
  • 3Belhumeur P N,Hespanha J P,and Kriegman D J.Eigenfaces vs.fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 4Yang M H.Kernel eigenfaces vs.kernel fisherfaces:Face recognition using kernel methods[C].Fifth IEEE International Conference on Automatic Face and Gesture Recognition(FG'02),Washington,USA,May 1-3,2002:411-416.
  • 5Roweis S T and Lawrence K Saul.Nonlinear dimeusionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 6Belkin M and Niyogi P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C].Advances in Neural Information Processing Systems 14,Vancouver,British Columbia,Canada,Dec.3-8,2001:585-591.
  • 7Yan Shuicheng,Xu Dong,and Zhang Benyu,et al..Graph embedding and extensions:A general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-51.
  • 8Cai Deng,He Xiaofei,and Han Jiawei.Spectral regression for efficient regularized subspace learning[C].IEEE International Conference on Computer Vision(ICCV'07),Rio de Janeiro,Brazil,Oct.14-20,2007:1-8.
  • 9Cai Deng,He Xiaofei,and Han Jiawei.SRDA:an efficient algorithm for large scale discriminant analysis[J].IEEE Transactions on Knowledge and Data Engineering,2008,20(1):1-12.
  • 10He Xiaofei,Cai Deng,and Yan Shuicheng,et al..Neighborhood preserving embedding[C].Tenth IEEE International Conference on Computer Vision(ICCV'2005),Beijing,China,Oct.17-20,2005:1208-1213.

同被引文献26

  • 1张家树,陈辉,李德芳,罗小宾,夏小东.人脸表情自动识别技术研究进展[J].西南交通大学学报,2005,40(3):285-292. 被引量:13
  • 2张祖涛,张家树,和红杰.基于脆弱数字水印的人脸图像的安全性[J].西南交通大学学报,2007,42(3):340-344. 被引量:3
  • 3RAO A, NOUSHATH S. Subspace methods for face recognition[J]. Computer Science Review, 2010, 4(1): 1-17.
  • 4ABATE A F, NAPPI M, RICCIO D, et al. 2D and 3D face recognition: a survey [ J ]. Pattern Recognition Letters, 2007, 28( 14): 1885-1906.
  • 5TURK M, PENTLAND A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3 ( 1 ) : 71-86.
  • 6YANG Jian, ZHANG D, FRANGI A F, et al. Two- dimensional PCA: a new approach to appearance based face representation and recognition [ J ]. IEEE Transactions Pattern Analysis Machine Intelligence, 2004, 26 ( I ) : 131-137.
  • 7ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500) : 2323-2326.
  • 8BELKIN M. NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[ J ]. Neural Computation, 2003, 15(6) : 1373-1396.
  • 9HE Xiaofei, NIYOGI P. Locality preserving projections[C] // Proc. Conf. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2004: 153-160.
  • 10HE Xiaofei, YAN Shuicheng, HU Yuxiao, et al. Face recognition using Laplacianfaces [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (3) : 328-340.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部