期刊文献+

黏性不可压流体的一种FCBIS三角形单元 被引量:2

A FCBIS TRIANGULAR ELEMENT FOR INCOMPRESSIBLE FLUID FLOWS
下载PDF
导出
摘要 结合流动条件插值和分裂算法的优点,提出了黏性不可压流体基于流动条件插值的分裂算法(FCBIS),构造了相应的平面三角形单元,推导了相应的有限元公式,并编制了计算程序.数值算例表明所构造的单元有效、准确. Taking advantages of the best features of flow-condition-based interpolation and split scheme,this paper proposes a flow-condition-based interpolation split scheme(FCBIS).A two dimensional triangle fluid element is built and a corresponding program is developed.The solution procedure is discussed and the numerical example solution is given to illustrate the efficiency and accuracy of the procedure.
作者 韩向科 苏波
出处 《力学与实践》 CSCD 北大核心 2010年第3期22-25,共4页 Mechanics in Engineering
基金 国家自然科学基金资助项目(50638050)
关键词 流动条件 三角形单元 分裂算法 不可压缩性 flow-condition triangular element split scheme incompressibility
  • 相关文献

参考文献10

  • 1Bathe K J, Zhang H. A flow-condition-based interpolation finite element procedure for incompressible fluid flows. Computers and Structures, 2002, 80:1267-1277.
  • 2Zienkiewicz OC, Taylor RL. The Finite Element Method for Fluid Dynamics(5th edn). Elsevier: Amsterdam, 2000.
  • 3Donea J, Giuliani S, Laval H, et al. Finite element solution of the unsteady Navier-Stokes equations by a fractional step method. Comput Methods Appl Mech Engrg, 1982, 30:53-73.
  • 4Haruhiko Kohno, Klaus-Jurgen Bathe. A flow-condition- based interpolation finite element procedure for triangular grids. International Journal for Numerical Methods in Fluids, 2006, 51:673-699.
  • 5Haruhiko Kohno, Klaus-Jurgen Bathe. A nine-node quadrilateral FCBI element for incompressible fluid flows. Communications in Numerical Methods in Engineering, 2006, 22:91-931.
  • 6Chorin AJ. Numerical solution of the Navier-Stokes equations. Math Comput, 1968, 22:742-762.
  • 7Chorin AJ. On the convergence of discrete approximation to the Navier-Stokes equations. Math Comput, 1969, 23: 341-353.
  • 8Comini G, Del Guidice S. Finite element solution of incompressible Navier-Stokes equations. Numer Heat Transfer, Part A, 1972, 5:463-478.
  • 9Nithiarasu P. An efficient artificial compressibility(AC) scheme based on characteristic based split (CBS) method for incompressible flows. International Journal for Numerical Methods in Engineering, 2003, 56:1815 1845.
  • 10Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and multigrid method. Journal of Computational Physics, 1982, 48: 387-411.

同被引文献22

  • 1钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构,2008,14(1):3-15. 被引量:89
  • 2Bathe K J,Zhang H.A flow-condition-based interpolation finite element procedure for incompressible fluid flows[J].Computers and Structures,2002,80:1267-1277.
  • 3Kohno H,Bathe K J.A nine-node quadrilateral FCBI element for incompressible fluid flows[J].Communications in Numerical Methods in Engineering.2006,22:917-931.
  • 4Zienkiewicz O C,Taylor R L.The Finite Element Method for Fluid Dynamics(5th edn)[M].Elsevier,Amsterdam,2000.
  • 5Chorin A J.Numerical solution of the Navier-Stokes equations[J].Math Comput,1968,22:742-762.
  • 6Chorin A J.On the convergence of discrete approximation to the Navier-Stokes equations[J].Math Comput,1969,23:341-353.
  • 7Comini G,Guidice S D,Finite element solution of incompressible Navier-Stokes equations[J].Numer Heat Transfer,Part A,1972,5:463-478.
  • 8Donea J,Giuliani S,Laval H,Quartapelle L.Finite element solution of the unsteady Navier-Stokes equations by a fractional step method[J].Comput Methods Appl Mech Engrg,1982,30:53-73.
  • 9Ghia U,Ghia K N,Shin C T.High-Re solutions for incompressible flow using the Navier-Stokes equations and multigrid method[J].Journal of Computational Physics,1982,48:387-411.
  • 10HUANG Cheng, ZHOU Dai, BAO Yan, et al. A sta- bilized finite element technique and its application for turbulent flow with high Reynolds number [J]. Wind and Structures, 9.011, 14(5): 465-480.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部