期刊文献+

基于多尺度几何分析的图像编码研究进展 被引量:10

Advances in Image Coding Based on Multiscale Geometric Analysis
下载PDF
导出
摘要 近10年来,在小波变换的理论基础之上,产生了一系列新的能够更加有效地表示和处理高维数据奇异的数学变换,统称为"多尺度几何分析".它们不仅具有多分辨率特性、时频局部性、多方向性和各向异性,而且克服了小波变换表示边缘、轮廓等高维奇异时存在的局限性.目前,有关多尺度几何分析的理论和应用方法的研究已经成为一个新的热点.首先探讨了小波变换的方向特性及其局限性;其次,以多尺度几何分析的发展为主线,对基于各种多尺度几何分析工具的静态图像编码算法进行概述阐述和比较研究,同时分析和讨论了各类算法的优势和不足;最后,对基于多尺度几何分析的图像编码算法的未来发展进行展望. Recently built upon the theory of wavelet analysis, a series of mathematical transforms have been explored that can effectively represent and process high-dimensional singularities. These novel transforms are generally referred to as "multiscale geometric analysis (MGA)". The objective of MGA is to establish an optimal transform that provides multiscale and multidirectional representation for high-dimensional functions. They have many good characteristics such as multiresolution, time-frequency localization, multi-directionality, as well as anisotropy. Meanwhile, MGA overcomes the limitations of wavelet in representing higher-dimensional singularities, such as edges and contours. So far, the theory and application of MGA have attracted extensive attention from different disciplines of image processing. Among these disciplines, MGA shows great potential for image coding since it can provide a sparser representation than wavelet. Research on MGA-based approach thus has become a focus in the field of image coding in recent years. In this paper, the authors first discuss the directionality of wavelet transform and its limitations. Then taking the development of MGA as thread, they summarize state-of-the-art image coding methods based on MGA. By comparative study, the advantages and drawbacks of each kind of methods are analyzed and discussed. Finally, they state the possible new directions of MGA-based image coding in further developments.
出处 《计算机研究与发展》 EI CSCD 北大核心 2010年第6期1132-1143,共12页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60372071) 辽宁省自然科学基金项目(20072156) 辽宁省教育厅科学技术研究项目(20060486) 南京邮电学院图像处理与图像通信江苏省重点实验室开放基金项目(ZK207008) 江苏省普通高校研究生科研创新计划基金项目(CX07B-121Z)
关键词 图像编码 多尺度几何分析 脊波变换 曲波变换 BANDELET变换 轮廓波变换 小波变换 image coding multiscale geometric analysis ridgelet transform curvelet transform Bandelet transform contourlet transform wavelet transform
  • 相关文献

参考文献68

  • 1宋传鸣,王相海.小波域视频运动估计研究进展[J].计算机学报,2005,28(10):1716-1727. 被引量:13
  • 2Skodras A, Christipoulos C, Ebrahimi T. The JPEG 2000 still image compression standard [J]. IEEE Signal Processing Magazine, 2001, 18(9): 36-58.
  • 3焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 4Candes E J. Ridgelets: Theory and applications [D]. Stanford: Department of Statistics, Stanford University, 1998.
  • 5Candes E J, Lonoho D L. Ridgelets: A key to higher- dimensional intermittency? [G] //Philosophical Transactions: Mathematical, Physical and Engineering Sciences 357. London: The Royal Society, 1999:2495-2509.
  • 6Candes E J, Lonoho D L. Curvelets a surprisingly effective non-adaptive representation for objects with edges [C] //Proc of Curves and Surfaces. Nashville, TN: Vanderbilt University Press, 2000:105-120.
  • 7Candes E J, Donoho D L. Curvelets and curvilinear integrals [J]. Journal of Approximation Theory, 2001, 113 ( 1 ) : 59- 90.
  • 8Pennec E L, Mallat S. Image compression with geometrical wavelets [C] ]/Proc of Int Conf on Image Processing. Piscataway, NJ: IEEE, 2000:661-664.
  • 9Pennec E L, Mallat S. Sparse geometric image representation with bandelets [J]. IEEE Trans on Image Processing, 2005, 14(4): 423-438.
  • 10Huo X, Chen J. JBEAM: Multiscale curve coding via beamlets [J]. IEEE Trans on Image Proeessing, 2005, 14 (11) : 1665-1677.

二级参考文献288

共引文献307

同被引文献83

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部