期刊文献+

基于半静态分层抽样的模糊聚类分析方法的改进

下载PDF
导出
摘要 基于统计模型的模糊聚类算法的时间复杂度在数据集规模超过一定数量级时是计算不可行的,解决时间复杂度的一个行之有效的方法是抽样。文章通过对静态抽样进行改进,设计了一种半静态抽样法,使样本数据集最大程度得保持原数据集的信息,并保证聚类结果的不失真性;最后通过实证分析,比较并证明了该方法是有效的。
作者 谢笑盈
出处 《统计与决策》 CSSCI 北大核心 2010年第11期12-14,共3页 Statistics & Decision
  • 相关文献

参考文献6

  • 1F.Hoppner, F. Klawonn, et al. Fuzzy Cluster Analysis:Methods for Classification, Data Analysis and Image Recognition[M].New York: John Wiley,1999.
  • 2M.Ester.,H.P.Kriegel.,J.Sander.A Density Based Algorithm for Discovrerying Clusters in Large Spatial Databases with Noise[C].In Proc of the 2nd.Knowledge Discovery and Data Mining,1996.
  • 3朱梅红.数据挖掘中抽样技术的应用[J].统计与决策,2007,23(16):147-150. 被引量:4
  • 4Tobias Scheffer, Stefan Wrobel.Finding the Most Interesting Patterns in a Database Quickly by Using Sequential Sampling[J].The Journal of Machine Learning, 2000,8.
  • 5Baohua Gu, Bing Liu,Feifang Hu,Huan Liu.Efficiently Determine the Starting Sample Size for Progressive Sampling[J].Lecture Notes in Computer Scierce,2001,2167.
  • 6S. Kullback.Information Theory and Statistics[M].Chichester:John Wiley and Sons, 1987.

二级参考文献6

  • 1Carlos Domingo, Ricard Gavalda , Osamu Watanabe, Adaptive Sampling Methods for Scaling Up Knowledge Discovery Algorithms[J]. Data Mining and Knowledge Discovery, 6, 131 - 152, 2002
  • 2G. John, P. Langley. Static Versus Dynamic Sampling for Data Mining[J].KDD-96, pp. 367- 370,AAAI/MIT Press 1996.
  • 3Yanrong Li, Raj P. Gopalan. Effective Sampling for Mining As-sociation Rules[J]. AI -2004, LNAI 3339, pp. 391- 401, 2004.
  • 4F. Olken, D. Rotem. Random Sampling from Database Files - a Survey[J]. In 5th Intl. Conf. Statistical and Scientific Database Management, Apr. 1990.
  • 5F. Provost ,V. Kolluri. A Survey of Methods for Sealing up Inductive Algorithms [J]. Knowledge Discovery and Data Mining 3(2), pp.131-169, 1999.
  • 6F. Provost, D.Jensen, , T. Oates. Efficient Progressive Sampling[J]. KDD-99, pp .23- 32,San Diego, CA,U.S.A.,1999.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部