期刊文献+

T应力对光弹性条纹影响的理论分析

THEORETICAL ANALYSIS OF T-STRESS EFFECTS ON PHOTOELASTIC FRINGE PATTERNS IN CRACKS
下载PDF
导出
摘要 以裂尖弹性应力场的多参数模型为基础,研究Ⅰ型、Ⅱ型以及Ⅰ/Ⅱ混合型裂纹参数对光弹性条纹的影响.T应力的存在和符号影响着等色线条纹环的半径大小和旋转方向,对于纯Ⅰ型或Ⅱ型裂纹而言,条纹环的旋转角度只与T应力有关;而对于Ⅰ/Ⅱ混合型裂纹,条纹环旋转角度与K_Ⅰ,K_Ⅱ和T应力有关.T应力的存在使得Ⅰ型裂纹在裂尖±π/3方向上出现2个各向同性点(T应力为正时),使得Ⅱ型裂纹在裂尖后的裂纹面上出现1个各向同性点.对于Ⅰ/Ⅱ混合型裂纹而言,当T应力为正时等倾线出现距裂尖半径不等的3个各向同性点;反之,T应力为负时在裂尖后只存在1个各向同性点,这些各向同性点分别与Ⅰ型和Ⅱ型裂纹情况具有相同的规律. Based on the multi-parameter mathematic model of the elastic stress field near a crack-tip,the influences of the stress intensity factors K_Ⅰ,K_(Ⅱ),and T-stress on the photoelastic isochromatic and isoclinic fringe patterns are presented for the modeⅠ,modeⅡand mixed modeⅠ/Ⅱcrack,respectively.It is confirmed that T-stress influences the radius and rotate direction of the isochromatic fringe loops.The rotated angle of the loop only relates to the T-stress for the modeⅠorⅡcrack,while to the intensity factors K_Ⅰ,K_(Ⅱ),and T-stress for the mixed modeⅠ/Ⅱcrack.There are two isotropic points along±π/3 directions in the modeⅠcrack under positive T-stress,while none of isotropic point under the negative T-stress.For the modeⅡcrack only one isotropic point appears behind the crack-tip under T-stress.For the mixedⅠ/Ⅱcrack,three isotropic points with different radius appear at the corresponding positions under the positive T-stress,however,one point exists behind the crack-tip for the negative T-stress.Thses isotropic points for the mixedⅠ/Ⅱcrack comply with rules in the modeⅠand modeⅡ,respectively.
作者 雷振坤 云海
出处 《力学学报》 EI CSCD 北大核心 2010年第3期482-490,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10972047) 工业装备结构分析国家重点实验室(S08206)资助项目~~
关键词 裂纹 应力强度因子 T应力 光弹性 等色线 等倾线 crack stress intensity factor T-stress photoelasticity isochromatic isoclinic
  • 相关文献

参考文献22

  • 1Sanford RJ. A critical reexamination of Westergaard method for solving opening mode crack problems. Mech Res Communications, 1979, 6(5): 289-294.
  • 2Irwin GR. Analysis of stress and strains near the end of a crack traversing a plate. J Appl Mech, 1957, 361-364.
  • 3Williams ML. On the stress distribution at the base of a stationary. J Appl Mech, 1957, 24:109-114.
  • 4Atluri SN, Kobayashi AS. Mechanical response of materials. In: Handbook on Experimental Mechanics, Prentice- Hall, 1987. 1-37.
  • 5Sanford RJ, Dally JW. A general method for determining mixed mode stress intensity factors from isochromatic fringe patterns. Eng Fract Mech, 1979, 11:621-633.
  • 6Ramesh K, Gupta S, Kelkar AA. Evaluation of stress field parameters in fracture mechanics by photoelasticity - revised. J Eng Fract Mech, 1997, 56(1): 25-45.
  • 7Kfouri AP. Some evaluations of elastic T-term using Eshelby's method. Int J Fract, 1986, 30:301-315.
  • 8Sham TL. The determination of the elastic T-term using higher order weight functions. Int J Fract, 1991, 48:81-102.
  • 9Olsen PC. Determining the stress intensity factors KI,KII and the T-term via the conservation laws using the boundary element methods. Eng Fract Mech, 1994, 49(1): 49-60.
  • 10Zhao LG, Chen YH. Effeet of the T-stress in microcrack shielding problems. J Appl Mech, 1998, 65(1): 71-75.

二级参考文献14

  • 1Zhao L G,J Appl Mech,1998年,65卷,1期,71页
  • 2Zhao L G,Int J Eng Sci,1997年,35卷,4期,387页
  • 3Chen Y H,Int J Eng Sci,1996年,34卷,7期,819页
  • 4Evans A G,Acta Metall,1985年,33卷,8期,1525页
  • 5Rice J R. Limitation to the small scale yielding approximate for crack tip plasticity[ J]. J Mech Phys Solid, 1974,24( 1 ): 17-26.
  • 6Larsson S G, Carlson A J. Influence of non-singular stress terms and specimen geometry on smallscale yielding at crack tips in elastic-plastic materials [ J ]. J Mech Phys Solids, 1973,21 (2): 263-277.
  • 7Bilby B A, Cardew G E, Goldthorpe M R, et al. A finite element investigation of the effect of specimen geometry on the fields of stress and strain at the tips of stationary cracks[ A]. In: Size Effects in Fracture [C]. London: Mechanical Engineering Publi
  • 8Betegon C, Hancock J W. Two-parameter characterization of elastic-plastic crack tip fields[ J]. ASME JA M, 1991 ,58(1): 104-110.
  • 9Cotterell B, Rice J R. Slightly cunved or kinked cracks[J]. Int J Fract, 1980,16(2): 155-169.
  • 10Fleck N A, Hutchinson J W, Suo Z. Crack path selection in a brittle adhesive layer[ J]. Int J Solids Struct, 1991,37(5): 1683-1703.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部