期刊文献+

基于g-l-PSO算法的灰度图像增强方法

A Gray Image Enhancing Algorithm Based on g-l-PSO
下载PDF
导出
摘要 规则化Beta函数给出了灰度图像对比度变换函数的统一表达形式,但是Beta函数的参数需要根据具体图像而确定,难于找出合理的参数值.首先分析了传统PSO算法的不足,使用种群的局部最优解为遗传依据,全局最优解为变异依据,提出综合的g-l-PSO算法.将g-l-PSO算法用于确定Beta函数的参数,通过适应度评估,可以获取最适合当前图像的参数值.通过三幅Pout图像的增强效果分析,可知该灰度图像增强方法切实可行. Regular Beta function gives a uniform expression of gray image contrast transform functions.But the two parameters of Beta function relate to specific images and they are difficult to find reasonable parameter values.This paper analyzed the traditional PSO algorithm and proposed a g-l-PSO algorithm.Using the local optimal solution for the population genetic and the variation was based on the global optimal solution.The Beta function parameters were determined g-l-PSO through the fitness assessment.This work can obtain the most suitable parameter values for current image.Three typical images enhancing experiments show that this approach is feasible.
作者 罗圣敏
出处 《微电子学与计算机》 CSCD 北大核心 2010年第6期109-113,共5页 Microelectronics & Computer
关键词 粒子群算法 图像增强 规则化Beta函数 PSO image enhancing regularized Beta function
  • 相关文献

参考文献7

二级参考文献16

  • 1Grossman A,Morlet J.Decomposition of hardy functions into square integrable wavelets of constant shape[J].SIAM J.Math.Anal.,1984,15(4):723-736.
  • 2Liu Ming-cai.Wavelet analysis and application[M].Beijing:Tsinghua University Press,2005.
  • 3McClellan,J artifacts in alpha-rooting of images[C].IEEE International Conference on Acoustics,Speech,and Signal Processing(ICASSP '80),1980,5:449-452.
  • 4Blair Silver,Sos Agaian,Karen Panetta;Logarithmic transform coefficient histogram mathching with spatial equalization[EB/OL]http://www.ece.tufts.edu/~karen/papers /SPIE_5817-24.pdf EB10L.
  • 5Ritter G X,Wilson J N,Handbook of computer vision algorithms in image algebra[C].CRC Press,1996.
  • 6Sos S,Agaigan,Karen P,Lentz,Artyom M.Grigoryan A new measure of image enhancement[C].Processing of the Conference ACIVS 2001;http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.4021.
  • 7Bo-qiu W U.A method of low contrast gray image enhancement and its performance evaluation based on PCNNs[D].Xi Dian University,2006,1.
  • 8Matz Sean C,Proc IEEE Int Conference on Image Processing,1999年,484页
  • 9Wang E R,Proc IEEE International Conference on Image Processing,1999年,154页
  • 10Zhang Yu,Proc IEEE International Conference on Image Processing,1999年,201页

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部