期刊文献+

SOFC的支持向量机(SVM)辨识建模 被引量:7

Study of Support Vector Machine Model for SOFC
下载PDF
导出
摘要 为了便于固体氧化物燃料电池(SOFC)的性能预测和控制方案设计,提出一种基于支持向量机(SVM)的建模方法,用具有RBF核函数的SVM建立了SOFC电池堆的非线性模型。应用仿真对所建SVM模型的有效性和精度进行了检验,并与BPNN模型的辨识效果进行了比较。仿真结果证明与BPNN模型相比,SVM模型具有较高的建模精度。该SVM辨识模型的建立,对SOFC系统的控制策略研究具有一定的实用价值。 For the purpose of perforrnance prediction and control scheme design, a nonlinear model based on support vector machine (SVM) was proposed for a family of complex systems with strong nonlinearity such as solid oxide fuel cell (SOFC). The nonlinear model was built by SFM with RBF kernel The validity and accuracy of the SVM model were tested by simulation. At the same time, the simulation result comparisons between the SFM model and the BPNN model demonstrate that the SVM model is superior to the BPNN in modeling the nonlinear properties of the SOFC. It has applied value to establish this SVM model for studying the control strategies of SOFC system.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第6期1557-1560,共4页 Journal of System Simulation
关键词 固体氧化物燃料电池(SOFC) 支持向量机(SVM) BP神经网络(BPNN) 建模 solid oxide fuel cell (SOFC) support vector machine (SVM) back propagation neural-network (BPNN) modeling
  • 相关文献

参考文献14

  • 1Costamagna P, Magistri L, Massardo A F. Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine [J]. Journal of Power Sources (S0378-7753), 2001, 96(2): 352-368.
  • 2Hall D J, Colclaser R G Transient modeling and simulation of a tubular solid oxide fuel cell [J]. IEEE Transactions on Energy Conversion (S0885-8969), 1999, 14 (3): 749-753.
  • 3Iora P, Aguiar P, Adjiman C S, Brandon N P. Comparison of two IT DIR-SOFC models: Impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis [J]. Chemical Engineering Science (S0009-2509), 2005, 60(11): 2963-2975.
  • 4Sudaprasert K, Travis R P, Martinez-Botas R F. A computational fluid dynamics model of a solid oxide fuel cell [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy (S0957-6509), 2005, 219(A3): 159-167.
  • 5Aguiar P, Adjiman C S, Brandon N E Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance [J]. Journal of Power Sources (S0378-7753), 2004, 138(1-2): 120-136.
  • 6Costamagna P, Selimovic A, Del Borghi M, Agnew G. Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC) [J]. Chemical Engineering Journal (S1385-8947), 2004,102(1): 61-69.
  • 7Arriagada J, Olausson P, Selimovic A, Artificial neural network simulator for SOFC performance prediction [J]. Journal of Power Sources (S0378-7753), 2002, 112 (1): 54-60.
  • 8Rakotomamonjy A, Le Riche R, Gualandris D, Harchaotli Z. A comparison of statistical learning approaches for engine torque estimation [J]. Control Engineering Practice (S0967-0661), 2008, 16 (1): 43-55.
  • 9Kermani B G, Kozlov I, Melnyk P, Zhao C, Hachmann J, Barker D, Lebl M. Using support vector machine regression to model the retention of peptides in immobilized metal-affinity chromatography [J]. Sensors and Actuators, B: Chemical (S0925-4005), 2007, 125(1): 149o157.
  • 10Lin G F, Chen G R, Huang P Y, Chou Y C. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-waming periods [J]. Journal of Hydrology (S0022-1694), 2009, 372(1-4): 17-29.

二级参考文献1

共引文献2267

同被引文献31

  • 1程健,许世森.固体氧化物燃料电池本体模拟研究[J].热力发电,2004,32(12):13-16. 被引量:7
  • 2刘鑫朝,颜宏文.一种改进的粒子群优化RBF网络学习算法[J].计算机技术与发展,2006,16(2):185-187. 被引量:15
  • 3杨晨,张雨英,徐泽亚.管型SOFC内部传热传质的数值仿真[J].系统仿真学报,2007,19(14):3206-3209. 被引量:7
  • 4Aguiar P, Adjiman C S, Brandon N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady state performance[J]. Journal of Power Sources (S0378-7753) ,2004,138 ( 1-2): 120-136.
  • 5Bove B, Lunghi P, Sammes N M. SOFC mathematic model for systems simulations-Part 2: definition of an analytical model[J]. International Journal of Hydrogen Energy (S0360- 3199) ,2005,30(2): 189-200.
  • 6Nehter P. Two-dimensional transient model of a cascaded micro-tubular solid oxide fuel cell fed with methane [J]. Journal of Power Sources (S0378-7753),2006,157 (1): 325-334.
  • 7Recknagle K P, Williford R E, Chick L A, et al. Three- dimensional thermo-fluid electrochemical modeling of planar SOFC stacks [J]. Journal of Power Sources (S0378-7753), 2003,113(1): 109-114.
  • 8Van den bergh F, Engelbrecht A P. Cooperative learning in neural networks using particle swarm optimization [J]. South African Computer Journal (S1015-7999),2000,26 (11): 84-90.
  • 9Sjoberg J, Zhang Q H, JUNG L, et al. Nonlinear black-box -16-.modeling in system identification: a unified overview [J]. Automatica (S0005-1098), 1995,31 (12): 1691-1724.
  • 10AGUIAR P, ADJIMAN C S, BRANDON N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I.. model- based steady state performance [ J ]. Journal of Power Sources, 2004,138 ( 1/2) : 120 - 136.

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部