摘要
使用中子密度一阶泰劳多项式分段近似技术,给出一个新的求解点堆中子动力学方程组的数值方法并采用全隐格式以克服方程组的刚性,同时确保解的必要精度。数值结果表明:在隐式一阶多项式近似下,对合适的反应性输入能够取得足够精确的结果。当反应性给定时,对于求解反应堆动力学问题,能给出一个简法的计算过程。
A new numerical method of solving the point reactor neutron kinetics equations by using the technique of first order Taylor polynomials for the approximation of neutron density in integral of one step is presented. The full implicit formulation is used to overcome the stiffness of the equations and to guarantee the necessary exactness of solution. The numerical results show that for reasonable reactivity inputs, a sufficient accuracy can be achieved in first order polynomial approach presented here. When the reactivity is given, this method can provide a straighforward computation procedure for solving reactor dynamics problems.
出处
《计算物理》
CSCD
北大核心
1999年第1期45-53,共9页
Chinese Journal of Computational Physics
关键词
点堆
中子动力学
刚性
反应性
数值方法
point reactor neutron kinetics
stiffness
reactivity
implicit.