期刊文献+

水翼非定常空化流场的数值模拟 被引量:8

Numerical simulation of unsteady cavitating flow on hydrofoil
下载PDF
导出
摘要 采用修正的RNGk-ε湍流模型对8°攻角NACA0015水翼的非定常二维空化流场进行数值模拟,分析当空化数分别为1和1.5,对应雷诺数为3×105时绕翼型的非定常流动,得到不同空化数下的非定常空化流场结构及其演化过程的流动特性.计算结果表明,回射流在空泡的形成和发展过程中起着重要的作用.空泡首先出现于水翼的前缘,在其产生的位置形成一个顺时针的漩涡,漩涡沿水翼上表面向下游移动.空泡逐渐长大并脱落,在不同空化数下,空泡脱落的位置不同.空泡形成和发展过程中均伴有压力的波动,大空化数流场的压力波动幅度和频率都明显高于小空化数流场. The unsteady cavitating flow around an NACA0015 hydrofoil at an angle of attack of 8°was simulated by a modified RNG κ-ε turbulence model with two different cavitation numbers of 1 and 1.5, and the Reynolds number of 3× 10^5. The structure of unsteady cavitating flow was obtained and so were the flow characteristics of its evolution process. Results show that the re-entrant jet plays an important role in the initiation and development process of cavity. The cavity first appears in the leading edge. Then the clockwise vortex developed in the same location moves to downstream along the surface of hydrofoil. The cavity grows up gradually and sheds from the hydrofoil and the shedding locations are different according to the cavitation numbers. The initiation and development process of the cavity accompany the pressure fluctuation. The amplitude and the frequency of pressure fluctuation of cavitating flow with a large cavitation number are obviously greater than that with a smaller eaviation number.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第5期1043-1048,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(10532010 50776077)
关键词 水翼 空化 回射流 数值模拟 hydrofoil cavitation re-entrant jet numerical simulation
  • 相关文献

参考文献10

  • 1HUTTON S P. Studies of cavitation erosion and its relation to cavitation flow patterns [C] // International Symposium on Cavitation. Japan: [s. n. ], 1986:21 - 29.
  • 2KUBOTA A, KATO H, YAMAGUCHI H. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique[J]. Journal of Fluids Engineering, 1989, 111 (2) : 204 - 210.
  • 3ZHANG Y, GOPALAN S, KATZ J. On the flow structure and turbulence in the closure region of attached cavitation [C] // Proceedings of the ASME Fluids Engineering Summer Meeting. Washington DC: [s.n.], 1998: 227-238.
  • 4李向宾,刘淑艳,王国玉,张博,张敏弟.绕水翼空化的发展及其涡量场特性分析[J].北京理工大学学报,2008,28(3):192-196. 被引量:8
  • 5KUBOTA A, KATO H, YAMAGUCHI H. A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics, 1992, 240:59-96.
  • 6SCHNERR G H, SAUER J. Physical and numerical modelling of unsteady cavitation dynamies [C] // 4th International Conference on Multiphase Flow. New Orleans: ICMF, 2001.
  • 7SINGHAL A K, LI H, ATAHAVALE M M, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3) 617 - 624.
  • 8KELLER A P, ROTT H K. The effect of flow turbulence on cavitation inception[C]// Proceedings of the ASME Fluids Engineering Division Summer Meeting. Vancouver: [s. n. ], 1997.
  • 9DULAR M, BACHERT R, STOFFEL B, et al. Experimental evaluation of numerical simulation of cavitating flow around hydrofoil[J]. European Journal of Mechanics B/Fluids, 2005, 24(4) : 522 - 538.
  • 10COUTIER-DELGOSHA O, FORTES-PATELLA R, REBOUD J L. Evaluation of turbulence model influence on the numerical simulations on unsteady cavitation[J]. Journal of Fluids Engineering, 2003, 125(1) : 38 - 45.

二级参考文献9

  • 1Wang G Y, Cao S L, Ikohagi T. Study on behaviors of cavaitating vortices in flows around a hollow-jet valve [C/CD]//Proc Third International Conference on Fluid Machinery and Fluid Engineering. Beijing: [s. n. ], 2000.
  • 2Knapp R T, Daily J W, Hammitt F G. Cavitation[M]. New York : McGraw-Hill, 1970.
  • 3Brennen C E. Cavitation and Bubble Dynamics [M]. Oxford: Oxford University Press, 1995.
  • 4Katz J. Cavitation phenomena within region of flow separation[J]. Journal of Fluid Mechanics, 1984, 140(4): 397 - 436.
  • 5Laberteraux K R, Ceccio S L, Mastrocola V J, et al. High speed digital imaging of cavitating vortices [J]. Experiments in Fluids, 1998, 24(6) :489 -498.
  • 6Wang G Y, Senocak I, Wei S Y, et al. Dynamics of attached turbulent cavitating flows[J]. Progress in Aerospace Sciences, 2001, 37(6) :551 - 581.
  • 7Tulin M P. Supercavitating propellers: history, operating characteristics, mechanism of operation, TR127-6 [R]. Santa Barbara, USA: Von Karmen Institute for Fluid Dynamics, 2001.
  • 8Wosnik M, Milosevic I. Time-resolved particle image velometry(TR-PIV) in ventilated and naturally cavitating flows[C/CD]//The Sixth International Symposium on Particle Image Velocimetry. Pasadena, USA: [s. n.],2005.
  • 9王国玉,曹树良,井小萩利明.剪切层区域旋涡空化的发生机理[J].清华大学学报(自然科学版),2001,41(10):62-64. 被引量:14

共引文献7

同被引文献64

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部