期刊文献+

无线接入点吞吐率预测的建模与优化

Modeling and Optimizing of Access Point Throughput Prediction
下载PDF
导出
摘要 针对接入点吞吐率的多步预测问题,提出基于Nu-支持向量回归的建模策略,设计了并行混合粒子群算法,从特征选择与参数选择两个方面对预测模型进行联合优化。评估结果表明,Nu-支持向量回归模型在吞吐率多步预测中能取得较高精度,并行混合粒子群算法具有良好收敛性,且能显著提高预测模型的性能。 Access point is the key device connecting wired and wireless facilities,its performance information is crucial for package routing,bandwidth allocation and management of quality of service parameter.This paper addresses the problem of generating multi-step-ahead throughput prediction for access point.A modeling strategy is introduced based on Nu-SVR(Nu-Support Vector Regression),and a PH-PSO(Parallel Hybrid Particle Swarm Optimization) algorithm is proposed,for the purpose of combinational optimization to prediction model,including feature selection and hyper-parameter selection.The evaluation results have shown that Nu-SVR model can achieve higher accuracy in throughput prediction of multi-step-ahead,and its performance can be remarkably improved by PH-PSO algorithm with fast convergence rate.
出处 《吉林大学学报(信息科学版)》 CAS 2010年第3期275-279,共5页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(60873235 60473099) 吉林省科技发展计划重点基金资助项目(20080318) 教育部新世纪优秀人才基金资助项目(NCET-06-0300)
关键词 吞吐率预测 接入点 参数选择 特征选择 nu-支持向量回归 并行混合粒子群优化 throughput prediction access point hyper-parameter selection feature selection nu-support vector regression(Nu-SVR) parallel hybrid particle swarm optimization(PH-PSO)
  • 相关文献

参考文献16

  • 1El-HAJJ W, ALAZEMI H. Optimal Frequency Assignment for IEEE 802. 11 Wireless Networks [ J ]. Wireless Communications and Mobile Computing, 2009 (9) : 131-141.
  • 2AKL R, PARK S. Optimal Access Point Selection and Traffic Allocation in IEEE 802. 11 Networks [ C ]// Proceedings of the 9th World Muhiconference on Systemics, Cybernetics and Informatics (WMSCI 2005) : Communication and Network Systems, Technologies and Applications. Piscataway, N J, USA : IEEE Press, 2005 : 75-79.
  • 3DAI L, XUE Y, CHANG B, et al. Optimal Routing for Wireless Mesh Networks with Dynamic Traffic Demand [ J ]. Mobile Networks and Applications, 2008, 13 (1/2) : 97-116.
  • 4WELLONS J, DAI L, CUI Y, et al. Predictive or Oblivious: A Comparative Study of Routing Strategies for Wireless Mesh Networks under Uncertain Demand [ C ] // Proceedings of the Fifth Annual IEEE Communications Society Conference on Sensor, Mesh, and Ad Hoc Communications and Networks. San Francisco: CA: [s. n. ] , 2008: 215-223.
  • 5YAO J, KANHERE S S, HASSAN M. An Empirical Study of Bandwidth Predictability in Mobile Computing [ C ] //Proceedings of 3rd ACM International Workshop on Wireless Network Tesbeds, Experimental Evaluations and Characterization (WINTECH2008) in Conjunction with ACM Moblcom 2008. San Francisco, USA: ACM, 2008: 11-18.
  • 6NICHOLSON A J, NOBLE B D. BreadCrumbs: Forecasting Mobile Connectivity [ C ] // Proceedings of MOBICOM08. [S. l. ]: ACM, 2008: 46-57.
  • 7NOGUEIRA A, SALVADOR P, VALADAS R. Predicting the Quality of Service of Wireless LANs Using Neural Networks [ C ] //Proceedings of the 9th ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM06). [ S. l. ] : ACM, 2006: 52-60.
  • 8VAPNIK V N. The Nature of Statistical Learning Theory [ M]. 2nd ed. New York: Springer-Verlag, 1999.
  • 9SMOLA A J, SCHOLKOPF B. A Tutorial on Support Vector Regression [ J]. Statistics and Computing, 2004, 14 (3) : 199- 222.
  • 10KEERTHI S S, LIN C J. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel [ J ]. Neural Computation, 2003, 15 (7): 1667-1689.

二级参考文献13

  • 1朱守正,安同一.天线理论与设计[M].北京:人民邮电出版社,2006:197-211.
  • 2KENNEDY J, EBERHART R C. Particle Swarm Optimization [ C ] //IEEE International Conference on Neural Networks. Piscataway, Perth, WA, Australia: IEEE Press, 1995: 1942-1948.
  • 3SHI Y, EBERHART R. A Modified Particle Swarm Optimizer [ C ] //IEEE World Congress on Computational Intelligence. Anchorage, AK, USA: IEEE Press, 1998: 69-73.
  • 4SHI Y, EMPIRCAL R C. Study of Particle Swarm Optimization[C]//The 1999 Congress on Evolutionary Computation. Wasbington, DC, USA: lEvEE. Press, 1999: 1945-1950.
  • 5RATNAWEERE A, HALGAMUGE S K, WATSON H C. Self-Organizing Hierarchical Particle Swarm Optimizer with Time- Varying Acceleration Coeffi-Cients [ J ]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3) : 240-255.
  • 6PARSOPOULOS K E, VRAHATIS M N. Investigating the Existence of Function Roots Using Particle Swarm Optimization [ C] //Proceedings of the Congress on Evolutionary Computation. [ S. l. ] : IEEE Press, 2003: 1448-1455.
  • 7YAHYA RAHMAT-SAMII, NANDO JIN. Particle Swarm Optimization in Engineering Electro-Magnetics: A Nature-Inspired Evolutionary Algorithm [ C ] //International Conference on Electromagnetics in Advanced Applications. Torino: IEEE Press, 2007 : 177-182.
  • 8CHEN T B, DONG Y L, JIAO Y C, et al. Synthesis of Circular Antenna Array Using Crossed Particle Swarm Optimization Algorithm [J]. Journal of Electromagnetic Waves and Applications, 2006, 20 (13) : 1785-1795.
  • 9于涧,胡亮,王剑辉.3G智能天线算法优化[J].吉林大学学报(信息科学版),2008,26(1):16-20. 被引量:4
  • 10田雨波,朱人杰,薛权祥.粒子群优化算法中惯性权重的研究进展[J].计算机工程与应用,2008,44(23):39-41. 被引量:27

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部