摘要
针对接入点吞吐率的多步预测问题,提出基于Nu-支持向量回归的建模策略,设计了并行混合粒子群算法,从特征选择与参数选择两个方面对预测模型进行联合优化。评估结果表明,Nu-支持向量回归模型在吞吐率多步预测中能取得较高精度,并行混合粒子群算法具有良好收敛性,且能显著提高预测模型的性能。
Access point is the key device connecting wired and wireless facilities,its performance information is crucial for package routing,bandwidth allocation and management of quality of service parameter.This paper addresses the problem of generating multi-step-ahead throughput prediction for access point.A modeling strategy is introduced based on Nu-SVR(Nu-Support Vector Regression),and a PH-PSO(Parallel Hybrid Particle Swarm Optimization) algorithm is proposed,for the purpose of combinational optimization to prediction model,including feature selection and hyper-parameter selection.The evaluation results have shown that Nu-SVR model can achieve higher accuracy in throughput prediction of multi-step-ahead,and its performance can be remarkably improved by PH-PSO algorithm with fast convergence rate.
出处
《吉林大学学报(信息科学版)》
CAS
2010年第3期275-279,共5页
Journal of Jilin University(Information Science Edition)
基金
国家自然科学基金资助项目(60873235
60473099)
吉林省科技发展计划重点基金资助项目(20080318)
教育部新世纪优秀人才基金资助项目(NCET-06-0300)
关键词
吞吐率预测
接入点
参数选择
特征选择
nu-支持向量回归
并行混合粒子群优化
throughput prediction
access point
hyper-parameter selection
feature selection
nu-support vector regression(Nu-SVR)
parallel hybrid particle swarm optimization(PH-PSO)