期刊文献+

具反馈控制单种群时滞模型的Hopf分支的频域分析 被引量:1

Frequency Domain Analysis for Bifurcation of a Logistic Growth Model with Feedback Control and Delay
下载PDF
导出
摘要 研究了一类具反馈控制单种群时滞模型.选择时滞τ为分支参数,得到了:当时滞τ通过一系列的临界值时,Hopf分支产生,即当时滞τ通过某些临界值时,从平衡点处产生一簇周期解.最后,用数值模拟验证了分析结果的正确性. In this paper,a logistic growth feedback control model with single species delay is investigated.By choosing the delay τ as a bifurcation parameter,we show that Hopf bifurcation can occur when τ passes a sequence of critical values,which means that a family of periodic solutions bifurcates from the equilibrium when the bifurcation parameter τ exceeds a critical value.Some numerical simulations are given to verify the validity of the theoretical analysis results.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期10-14,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771094) 湖南工程学院科研启动金资助项目(0744)
关键词 反馈控制 HOPF分支 稳定性 频域法 耐奎施特准则 feedback control Hopf bifurcation stability frequency domain Nyquist criterion
  • 相关文献

参考文献7

  • 1May R M. Time Delay Versus Stability in Population Models with Two or Three Tropic Levels -J]. Ecology, 1973, 54(2) :315 - 325.
  • 2Cao Y, Gard T C. Uniform Persistence for Population Models with Delay Using Multiple Lyapunov Functions [J]. Diff Inte Eqns, 1993, 6:883-898.
  • 3Gopalsamy K, Weng P X. Feedback Regulation of Logistic Growth [J], Inter J Math Sci, 1993, 16(1) : 177 -- 192.
  • 4Wang W D, Tang C L. Dynamics of a Delayed Population Model with Feedback Control [J]. Austral Math Soc Ser B, 2000(41) : 451 - 457.
  • 5Moiola J L, Chen G R. Hopf Bifurcation Analysis: A Frequency Domain Approach [M]. Singapore: World Scientific, 1996.
  • 6Liao X F, Li S W, Chen G R. Bifurcation Analysis on a Two-Neuron System with Distributed Delays in the Frequency Domain [J]. Neural Networks, 2004, 17(4) : 545 -- 561.
  • 7王战伟,王稳地,王小莉.具有双分布时滞的HIV-I模型的分支分析(英文)[J].西南大学学报(自然科学版),2007,29(2):15-21. 被引量:4

二级参考文献2

  • 1Rebecca V. Culshaw,Shigui Ruan,Glenn Webb. A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay[J] 2003,Journal of Mathematical Biology(5):425~444
  • 2Xue-Zhong He,Shigui Ruan. Global stability in chemostat-type plankton models with delayed nutrient recycling[J] 1998,Journal of Mathematical Biology(3):253~271

共引文献3

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部