期刊文献+

金字塔型波纹薄壁管抗撞性分析和优化 被引量:1

Crashworthiness Analysis and Optimization of Thin-walled Tube with Pyramidal Folding Patterns
原文传递
导出
摘要 为提高薄壁结构吸能元件的抗撞性能,在传统的光滑圆柱壳表面添加金字塔型波纹。基于显式有限元技术,应用LS-DYNA软件对这种新型的金字塔型波纹薄壁管进行抗撞性分析。采用Fibonacci搜索方法搜索该波纹管的正多边形截面的最佳边数,以波纹的高度和倾角为设计变量,以结构的吸能为优化目标建立优化模型。采用响应面法拟合目标函数,进行优化设计。半径为40mm的波纹管算例的优化结果表明,金字塔型波纹管在截面为正十一边形、波纹高度为80mm、金字塔形波纹的顶点到中心轴的距离为38.92mm时吸能最大,吸能能力比光滑表面的圆截面结构提高31.88%。新提出的波纹结构可用于实际吸能元件的设计,并为进一步研究奠定基础。 Thin-walled structures are often used as energy absorbers to dissipate the kinetic energy of impacting in case of accident.In order to improve the crashworthiness of thin-walled structures,the pyramidal folding pattern is added to the smooth surface of traditional cylindrical shell.LS-DYNA is adopted to analyze the new tube's crashworthiness with explicit Finite Element (FE) technique.Fibonacci Search method is used to search the optimal number of sides of polygon of the new model's section.With the height and obliquity of the pattern as optimization variables,the absorbed energy as the optimization objective,the optimization model is built.Response Surface Method is used to obtain an approximation of the implicit quadratic function to make the optimization objective explicit.And then,the optimization problem can be solved.Take 40mm-radius tube with pyramidal folding patterns as an example,the optimization results show that,when the side number of the section polygon is 11,the pattern's height is 80 mm and the distance from pattern peak to axis is 38.92mm,the pyramidal folding pattern tube has the best ability in absorbing energy.Compared with the traditional smooth cylindrical shell,the energy-absorption ability is improved by 31.88%.The new folding pattern structure proposed in this paper can be applied in designing practical energy absorption components.The directions for further study are suggested.
出处 《科技导报》 CAS CSCD 北大核心 2010年第11期79-85,共7页 Science & Technology Review
基金 国家自然科学基金项目(10872012) 北京市自然科学基金项目(3093019) 大连理工大学工业装备结构分析国家重点实验室基金项目(GZ0819)
关键词 抗撞性 波纹管 LS-DYNA FIBONACCI搜索 优化设计 crashworthiness tube with folding pattern LS-DYNA Fibonacci Search optimization design
  • 相关文献

参考文献8

  • 1Pulley A,Macaulay M.The large scale crumpling of thin cylindrical columns[J].Quarterly Journal of Mechanics and Applied Mathematics,1960,13(1):1-9.
  • 2Hanssen A G,Langseth M,Hopperstad O S.Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler[J].International Journal of Impact Engineering,2000,24(5):475-477.
  • 3Alexander J M.An approximate analysis of the collapse of thin cylindrical shells under axial load[J].Quarterly Journal of Mechanics and Applied Mathematics,1969,13:10-15.
  • 4Subasi M,Yildirim N,Yildiz B.An improvement on Fibonacci search method in optimization theory[J].Applied Mathematics and Computation,2004,147:893-901.
  • 5张延年,刘斌,朱朝艳,董锦坤,李艺.离散变量优化设计的改进斐波那契遗传算法[J].机械强度,2006,28(1):55-60. 被引量:13
  • 6Yamazaki K,Han J.Maximization of the crushing energy absorption of tubes[J].Structural Optimization,1998,16:37-46.
  • 7Forsberg J.On polynomial response surface and Kriging for use in structural optimization of crashworthiness[J].Structural and Muhidisciplinary optimization,2005,29(3):232-243.
  • 8隋允康,白海波.基于中心点精确响应面法的板壳结构优化[J].机械设计,2005,22(11):10-13. 被引量:9

二级参考文献21

  • 1Manolis Papadrakakis, Nikos D. Lagaros, Yiannis Tsompanakis. Structural optimization using evolution strategies and neural networks[J]. Computer methods in applied mechanics and engineering, 1998,156: 309-333.
  • 2Nikolaos D Lagaros, Manolis Papadrakakis , George Kokossalakis. Structural optimization using evolutionary algorithms[J].Computers and Structures, 2002, 80: 571- 589.
  • 3Nikolaos D Lagaros, Manolis Papadrakakis. Learning improvement of neural networks used in structural optimization[J]. Advances in Engineering Software, 2004,35: 9- 25.
  • 4Hang E J,Kirmser P G. Minimum weight of beams with inequality constraints on stress and deflection[J]. J. Appl. Meth. , 1967,34: 999.
  • 5Using Stand7-Introduction to the Strand7 finite element Analysis System[C]. G+D Computing, 2002.
  • 6Myers R H, Montgomery D C. Response surface methodology[M]. New York: John Wiley &Sons Inc, 1995.
  • 7Roux W J, Preez R J du, Stander N. Design optimization of a semi-solid tyre using response surface approximations[J]. Engineering Computations, 1999, 16(2): 165-184.
  • 8Roberto Vitali. Response surface methods for high dimensional structural design problems[D]. Ph. D dissertation. University of Florida, 2000.
  • 9Todd M. Dvorak. Response surface optimization techniques for multiple objective and randomly valued independent variable problems[D]. Ph. D dissertation. University of Central Florida, 2000.
  • 10Kurtaran H, Eskandarian A, Marzougui D, et al. Crashworthiness dseign optimization using successive response surface approximations[J]. Computational Mechanics, 2002,29: 409- 421.

共引文献20

同被引文献7

  • 1罗尧治,张楠.K型搭接节点承载力性能分析及建议公式[J].钢结构,2004,19(3):23-26. 被引量:23
  • 2陈以一,虞晓华.大直径钢管节点极限承载力的试验及分析[J].工程力学,1996,13(A03):51-55. 被引量:9
  • 3Eastwood W, Wood A A. Welded joints in tubular structures involving rectangular sections [C]//Proceedings of Conference on Joints in Structures. Sheffield: University of Sheffield, 1970: 245-260.
  • 4Dexter E M, Lee M M K. Static strength of axially loaded tubular K-joints[J]. Journal of Structural Engineering, 1999, 125(2): 194-201.
  • 5Gazzola F, Lee M M K, Dexter E M. Design equation for overlap tubular K-joints under axial loading [J]. Journal of Structural Engineering, 2000, 126(7): 798-808.
  • 6刘树堂.输电杆塔结构及其基础设计[M].北京:中国水利水电出版社.2009:92.
  • 7中华人民共和国建设部.钢结构设计规范[M].北京:中国计划出版社,2003.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部