期刊文献+

针对通信社会网络的时间序列链接预测算法 被引量:6

Time Series Link Prediction for Communication Social Network
下载PDF
导出
摘要 已有静态链接预测主要采用覆盖图表示社会网络,利用链接之间的结构信息来预测链接的发生。然而,这些方法仅能预测新链接的发生,而对旧链接的重复发生没有做预测,因此不适合预测重复发生的链接是主要兴趣的应用领域。针对静态链接预测算法的不足,引入时间序列链接预测算法,并且组合静态和时间序列链接预测算法为混合时间序列链接预测算法。在Enron电子邮件数据集上的实验结果表明,时间序列链接预测算法性能优于静态链接预测,混合时间序列链接预测算法的预测性能比单独使用静态或时间序列链接预测算法都要优越。 Existing static link prediction methods have mostly adopted overlay network to represent social network and used structural information of inter-link to predict future link occurrences. However, these methods can only predict new link occurrences, the repeated old link occurrences are not generally studied, so do not apply to many application domains that the prediction of the repeated link occurrences are of main interest. For these deficiencies of static link prediction, this paper introduces the time series link prediction and combines static graph and time series prediction to obtain hybrid time series link prediction. Using the Enron email data the experiments confirm that the time series link prediction can achieve better prediction performance than static link prediction. Furthermore, the hybrid link prediction can get better performance than only using static or time series link prediction.
出处 《计算机科学与探索》 CSCD 2010年第6期552-559,共8页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.60673136~~
关键词 链接预测 时间序列 ARIMA模型 link prediction time series autoregressive integrated moving average (ARIMA) model
  • 相关文献

参考文献11

  • 1Carpenter T, Karakostas G, Shallcross D. Practical issues and algorithms for analyzing terrorist networks[EB/OL]. Telcordia Technologies [2008-06-12]. http://www.cas.mcmaster.ca/-gk/papers/wmc2002.pdf.
  • 2Huang Z, Li X, Chen H. Link prediction approach to collaborative filtering[C]//Proceedings of the 5th ACM/ IEEE-CS Joint Conference on Digital Libraries, 2005: 141-142.
  • 3Henziger M. Link analysis in Web information retrieval[J]. IEEE Data Engineering Bulletin, 2000, 23(3): 113-118.
  • 4Zanette D H. Dynamics of rumor propagation on small- world networks[J]. Physical Review E, 2002, 65(4): 1908-1917.
  • 5Hasan M A, Chaoji V, Salem S, et al. Link prediction using supervised learning[C]//Workshop on Link Analysis,Counter-terrorism and Security (at SIAM Data Mining Conference), 2006.
  • 6Zhu Jianhan, Hong Jun, Hughes J G. Using markov chains for link prediction in adaptive Web sites[C]//Bustard D, Liu W, Sterritt R. Soft-Ware 2002: Computing in an Imperfect World. Berlin/Heidelberg: Springer, 2002: 55-56.
  • 7Zan Huang. Link prediction based on graph topology: The predictive value of the generalized clustering coefficient [C]//12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (LinkKDD2006), 2006.
  • 8Box G E P, Jenkins G M, Reinsel G C. Time series analysis: Forecasting, and control[M]. [S.l.]: John Wiley, 2008: 446-449.
  • 9Akaike H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 2003 19(6): 716-723.
  • 10Liben-Nowell D, Kleinberg J.The link prediction problem for social networks[C]//Proceedings of the 12th International Conference on Information and Knowledge Management, 2003: 556-559.

同被引文献40

  • 1David Liben-Nowell,Jon Kleinberg.The link prediction problem for social networks. Proceedings of the twelfth international conference on Information and knowledge management . 2003
  • 2Zan Huang.Link prediction based on graph topology:The predictive value of the generalized clustering coefficient. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (LinkKDD 2006) . 2006
  • 3Witten I H,Frank E.Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. . 2005
  • 4Lichtenwalter R,Lussier J,Chawla N.New perspectives and methods in link prediction. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining . 2010
  • 5Leroy V,Cambazoglu B,Bonchi F.Cold start link prediction. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining . 2010
  • 6Bartal A,Sasson E,Ravid G.Predicting links in social networks using text mining and sna. Social Network Analysis and Mining, 2009. ASONAM’’09. International Conference on Advances in . 2009
  • 7Murata Tsuyoshi,Moriyasu Sakiko.Link prediction of social networks based on weighted poximity measures. IEEE/WIC/ACM Int Conf on Web Intelligence (WI2007) . 2007
  • 8Lu Linyuan,Zhou Tao.Similarity index based on local paths for link prediction of complex networks. Physical Review . 2009
  • 9AI Hasan Mohammad,Chaoji Vineet.Link prediction using supervised learning. Proc of the6th SIAM Int Conf on Data Mining(SDM06) . 2006
  • 10OMadadhain Joshua,Hutchins Jon.Prediction and ranking algorithms for event-based network data. Sigkdd Explorations . 2007

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部