期刊文献+

用于特征提取的Gabor滤波器参数设计 被引量:5

Parameter Design of Gabor Filters for Feature Extraction
下载PDF
导出
摘要 Gabor滤波器的参数设计是Gabor特征提取过程中的一个重要环节。根据坦克的外形特点及对方向的敏感性对其进行了针对性的参数设置,实验结果证明得到了很好的滤波效果。根据Gabor核函数的窗口特性,提出了一种自适应的基于Gabor滤波器的特征提取算法。该算法应用Gabor滤波器的多尺度特性与样本图像进行卷积,对Gabor域响应进行局部极大值提取,经过该方法得到的特征点有效地减少了数据冗余,并且具有较好的图像表征能力。 For feature extraction based Gabor filters, the design of filter parameter is very important. In this paper, parameters are designed according to the appearance characters and the sensitiveness of the orientations of tank. Experimental re suits show that the method is effective. Besides, according to the characteristics of Gabor kernels function window, an adaptive feature extraction algorithm is put forward based on Gabor filter. In this algorithm, features are extracted with the multi-scale recognition of Gabor filter and the value of the extracted features are the maximum value in the defined windows. It is proved by the experiments that the novel feature extraction algorithm is effective both in data redundancy and image rep resentation.
出处 《光学与光电技术》 2010年第3期79-83,共5页 Optics & Optoelectronic Technology
基金 山西省自然基金(2007012003)资助项目
关键词 GABOR滤波 参数设置 Gabor核函数 特征提取 Gabor filters parameter setting Gabor kernel feature extraction
  • 相关文献

参考文献4

二级参考文献42

  • 1Shen L L, Bai L. A review on Gabor wavelets for face recognition. Pattern Analysis and Applications, 2006, 9(2- 3): 273-292
  • 2Wang W, Li J W, Huang F F, Feng H L. Design and implementation of Log-Gabor filter in fingerprint image enhancement. Pattern Recognition Letters, 2008, 29(3): 301-308
  • 3Ding K, Liu Z B, Jin L W, Zhu X H. A comparative study of Gabor feature and gradient feature for handwritten Chinese character recognition. In: Proceedings of International Conference on Wavelet Analysis and Pattern Recognition. Washington D. C., USA: IEEE, 2007. 1182-1186
  • 4Wiskott L, Fellous J M, Kruger N, vonder M C. Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 775 - 779
  • 5Phillips P J, Moon H, Rizvi S A, Rauss P J. The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090-1104
  • 6Chung K C, Kee S C, Kim S R. Face recognition using principal component analysis of Gabor filter responses. In: Proceedings of International Workshop on Recognitions Analysis, and Tracking of Faces and Gestures in Real-Time Systems. Corfu, Greece: IEEE, 1999. 53-57
  • 7Liu C J, Wechsler H. Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing, 2002, 11(4): 467-476
  • 8Shen L L, Bai L, Fairhurst M. Gabor wavelets and general discriminant analysis for face identification and verification. Image and Vision Computing, 2007, 25(5): 553-563
  • 9Zhang W C, Shan S Q,-Gao W, Chang Y Z, Cao B, Yang P. Information fusion in face identification. In: Proceedings of the 17th International Conference on Pattern Recognition. Washington D. C., USA: IEEE, 2004. 950-953
  • 10Qin J, He z S. A SVM face recognition method based on Cabot-featured key points. In: Proceedings of the 4th International Conference on Machine Learning and Cybernetics. WashingtonD. C., USA-IEEE, 2005: 5144-5149

共引文献46

同被引文献28

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部