期刊文献+

干扰源对3人量子囚徒困境上策均衡预期收益的影响 被引量:3

The Effect on The Expected Payoff of Corrupted Three-player Quantum Prisoner's Dilemma
下载PDF
导出
摘要 文章讨论了在量子囚徒困境中,当量子比特源受到一个干扰源的干扰时,简单的3人量子囚徒困境出现了量子优势的改变:高于干扰等级的临界值,相干量子效应就会妨碍参与者以至于最优选择由量子策略变成经典策略.从风险的观点来看,在各自采取上策均衡的情况下,量子博弈参与者有较大的潜力获利,但同时也有较大的潜力损失,这将导致参与者的瞬间获益具有较大的涨落,并因此承担较大的风险;而经典博弈参与者具有较小的获益涨落潜力,其承担的风险则较小. The Prisoner's Dilemma plays a very important part in the game theory.It is related to economics,political science,sociology,philosophy,ethnics,etc.when study in such field quantized the Prisoner's Dilemma and found that the payoffs for the players are better than that in the classical game.Then,people developed the two-player Quantum Prisoner's Dilemma into multiplayer quantum game.Also,they found that the quantum game does better than classical game.But now,the quantum advantage arising in a simplified multiplayer quantum game is found to be disadvantage when the game's qubit source is corrupted.
作者 聂靖
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期57-60,共4页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 量子纠缠 囚徒困境 上策均衡 量子干扰源 收益 量子博弈 quantum entanglement the Prisoner's Dilemma dominant equilibrium corrupted qubit-source payoff quantum game
  • 相关文献

参考文献15

  • 1Nowak M A, Sigmund K. Phage-lift for Game Theory [J]. Nature, 1999, (398):367.
  • 2Meyer D A. Quantum Strategies [J]. Phys Rev Lett, 1999, 82(5) : 1052.
  • 3Eisert J, Wilkens M. Quantum Games[J].Journal of Modern Optics. 2000, 47(14):2543 -2556.
  • 4Eisert J, Wilkens M, Lewenstein M. Quantum Games and Quantum Strategies [J]. Phys Rev Lett. 1999, 83(15): 3077.
  • 5Benjamin S C, Hayden P M. Multiplayer Quantum Games [J]. Phys Rev. A, 2001, 64(3) : 030301.
  • 6Li H, Du J F, Serge M. Continuous-variable Quantum Games [J]. Phys Lett. A, 2002, 306(2- 3): 73- 78.
  • 7Du J F, Li H, Chen Y J. Quantum Games of Asymmetric Information [J]. Phys Rev. E, 2003, 68(1) : 016124.
  • 8Benjamin S C, Hayden P M. Comment on "Quantum Games and Quantum Strategies" [J].Phys Rev Lett, 2001, 87(6) : 069801.
  • 9Chen J L, Kwek L C, Oh C H. Noisy Quantum Game[J]. Phys Rev. A, 2002, 65(5) : 052320.
  • 10李传锋,郭光灿.量子信息研究进展[J].物理学进展,2000,20(4):407-431. 被引量:31

二级参考文献41

  • 1[1]Nowak M A,Sigmund K.Nature[J].1999,398:367.
  • 2[2]Neumann J von,Morgenstern O.The theory of games and economic behavior[M].Princeton:Princeton University Press,1947.
  • 3[3]Ball P.Everyone wins in quantum games[J].Nature,Science Update,1999,18.
  • 4[4]Peterson I.Quantum games[J].Science News,1999,156:334.
  • 5[5]Meyer D A.Quantum strategies[J].Phys Rev Lett,1999,82:1 052.
  • 6[6]Eisert J,Wilkens M,Lewenstein M.Quantum games and quantum strategies[J].Phys Rev Lett,1999,83:3 077.
  • 7[7]Marinatto L,Weber T.A quantum aptroach to static games of complete information[J].Phys Lett A,2000,272:291.
  • 8[8]Benjamin S C,Hayden P M.Multi player quantum games[J].Phys Rev A,2001,64:30 301.
  • 9Zhang C W,Phys Rev A,2000年
  • 10Zhang C W,Phys Rev A,2000年,61卷,062310页

共引文献40

同被引文献15

  • 1HOWITT A P.Endogenous Growth Theory[M].Massachusetts:MIT Press,1998:211-214.
  • 2KALLIS G.When is it Coevolution[J].Ecological Economics,2007,62:1-6.
  • 3陈岱婉.环境保护与经济发展的博弈[J].太原师范学院学报(自然科学版),2007,6(4):39-42. 被引量:4
  • 4朱·弗登伯格,让·梯若尔.博弈论[M].北京:中国人民大学出版社,2000.
  • 5J. W. Weibull. Evolutionary Game Theory [ M ]. Cambridge:The MIT Press, 1995.
  • 6J. Eisert, M. Wilkens, M. Lewenstein. Quantum Games and Quantum Strategies[ J]. Physical Review Letters, 1999,83 ( 15 ) :3007.
  • 7J. Eisert, M. Wilkens. Quantum Games[ J ]. Journal of Modem Optics ,2000,47 ( 14-15 ) :2543 - 2556.
  • 8H. Guo, J. H. Zhang, G. J. Koehler. A Survey of quantum games [ J ]. Decision Support Systems,2008,46 ( 1 ) :318 - 332.
  • 9L. Marinatto, T. Weber. A Quantum Approach to Static Games of Complete Information [ J ]. Physical Review Letters, A,2000,272 (5-6) :291 - 303.
  • 10A. Iqbal, A. H. Toor. Evolutionary Stable Strategies in Quantum Games [ J ]. Physical Review Letters A,2001,180 ( 5-6 ) :249 - 256.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部