期刊文献+

目标跟踪中非线性滤波算法的研究

Research on Several Nonlinear Filtering Algorithms in Target Tracking
下载PDF
导出
摘要 介绍了3种非线性估计方法。在处理目标跟踪等动态系统实时估计问题中,EKF将系统进行线性化近似时存在估计误差,从而影响目标跟踪的精度;PF对系统噪声和量测噪声的概率分布没有要求;RPF是改进的粒子滤波算法。分析了EKF、PF和RPF算法的原理,比较了3种算法的性能差异。仿真结果表明,PF滤波精度优于EKF,而RPF在精度和计算复杂度等方面均优于PF,且随着粒子数目的增加,PF和RPF的精度也不断提升。 Three nonlinear estimation methods are introduced,which are Extended Kalman Filter(EKF),Particle Filter(PF) and Regularized Particle Filter(RPF).We present the general principle of these algorithms and compare the differences among them.When EKF is applied to dealing with real-time estimation of dynamic system,such as target tracking,here is estimation error due to the defects of EKF in nonlinear estimation,which affects the accuracy of target tracking.PF does not require the probability distribution on the system noise and measurement noise.RPF is an improved particle filter algorithm.Experiment results show that the estimation precision of PF is better than that of EKF,but they are both poorer than RPF on estimation precision and calculation capacity.And with the increase of the number of particles,the estimation precision of PF and RPF will become better.
出处 《机械工程与自动化》 2010年第3期90-92,共3页 Mechanical Engineering & Automation
关键词 非线性滤波 扩展卡尔曼滤波 粒子滤波 正则化粒子滤波 状态估计 nonlinear filtering EKF PF RPF state estimation
  • 相关文献

参考文献6

  • 1Doucet A,Freitas N de,Gordon N.Sequential monte carlo methods in practice[M].New York:Springer,2001.
  • 2Greg Welch,Gary Bishop.An introduction to the Kalman filer[D].Chapel Hill:University of North Carolina at Chapel Hill,2004:1-47.
  • 3Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-gaussian bayesian state estimation[J].IEEE Proceeding on Radar and Signal Processing,1993,140:107-113.
  • 4Oppenheim G,Philippe A,Rigal J de.The particle filters and their applications[J].Chemometrics and Intelligent Laboratory Systems,2008,91:87-93.
  • 5崔平远,郑黎方,裴福俊,刘红云.基于卡尔曼/粒子组合滤波器的组合导航方法研究[J].系统仿真学报,2009,21(1):220-223. 被引量:18
  • 6程水英,张剑云.粒子滤波评述[J].宇航学报,2008,29(4):1099-1111. 被引量:100

二级参考文献76

  • 1宁晓琳,房建成.一种基于UPF的月球车自主天文导航方法[J].宇航学报,2006,27(4):648-653. 被引量:23
  • 2李景熹,王树宗.UPF算法及其在目标跟踪问题中的应用[J].系统仿真学报,2007,19(3):675-677. 被引量:10
  • 3汤琦,黄建国,杨旭东,冯西安.基于粒子滤波的被动多基站跟踪算法(英文)[J].宇航学报,2007,28(2):375-379. 被引量:1
  • 4GORDON N J, SALMOND D J, SMITH A F M. A Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation [J]. IEEE Proceedings on Radar and Signal Processing (S0956-375X), 1993, 140(2): 107-113.
  • 5C Musso, N Oudjane, F LeGland. Improving regularised particle filters [M]// Sequential Monte Carlo Methods in Practice, A Doucet, J F G de Frcitas, N J Gordon, Eds. New York, USA: Springcr-Vcrlag, 2001.
  • 6N Oudjane, C Musso. Progressive correction for regularized panicle filter [C]// FUSION 2000. Proceedings of the Third International Conference on, 10-13 July 2000:THB2/10-THB2/17 vol. 2.
  • 7Miodrag Bolic, Petar Miodrag Bolic Petar. New resamping algorithms for particle filters [C]// Acoustics, Speec, and Signal Processing, 2003 Proceedings (ICASSP-03), 2003 IEEE International Conference, 6-10 April 2003. USA: IEEE, 2003: 589-592.
  • 8Thomas Schon, Fredrik Gustafsson, Per-John Nordlund. Marginalized Particle Filters for Mixed Linear/Nonlinear State-space Models [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING (S1053-587X), 2005, 53(7): 2279-2289.
  • 9Doucet A, Godsill S, Andrieu C. On sequential monte carlo sampling methods for bayesian filtering [J]. Statistics and Computing (S0960-3174), 2000, 10(3): 197-208.
  • 10Audrey Giremus, Jean-Yves Tourneret, Petar M Djuric. An improved regularized particle filters for gps/ins integration [C]// IEEE 6^th Workshop on Signal Processing Advances in Wireless Communications, 2005. USA: IEEE, 2005: 1013-1017.

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部