期刊文献+

中国黄金市场的风险价值研究——基于参数法和非参数法的实证 被引量:1

下载PDF
导出
摘要 上海黄金交易所的黄金AU99.99既是现货市场,同时T+D等特殊交易机制使其类似于黄金期货,具有套期保值的特点,当然也具有潜在巨大风险。投资者越来越重视黄金的投资,而风险价值(VaR)作为风险管理的新的标准方法也越来越受到投资者的青睐。因此,本文以上海黄金交易所的黄金AU99.99日数据为样本,并且根据利好与利空信息对市场波动性的不对称影响及收益率非高斯分布,分别采用参数法(EGARCH-VaR模型)和非参数模型(MC-EGARCH-VaR模型)度量我国黄金市场的VaR。实证结果表明两种模型都能较好的拟合上涨VaR,但是,拟合下跌VaR中,非参数法较参数法效果更优,研究结论为投资者根据模型所估算的VaR调整仓位,有效管理风险提供了参考。
作者 邓海清 张媛
出处 《世界经济情况》 2010年第5期91-97,共7页 World Economic Outlook
  • 相关文献

参考文献15

  • 1Bollerslev T. A Generalized Autoregressive Conditional Heteroskedasticity [J]. Journal of Econometrics, 1986, 31: 307-27.
  • 2Forrest Capie, Terence C. Mills and Geoffrey Wood, Gold as a hedge against the dollar [J]. Journal of International Financial Markets, Institutions and Money, 2005, 4:343-352.
  • 3Engle R. F. Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation [J]. Econometriea, 1982, 50:987-1008.
  • 4Jorion, P. Risk: Measuring the risk in Value at Risk[J]. Financial Analysis Journal, 1996, : 47-56.
  • 5Kupiec, Paul H. Techniques for verifying the accuracy of risk measurement models [J]. Journal of Derivatives, 1995, 3. 73-84.
  • 6Mills T. C. Statistical analysis of daily gold price data [J]. Physica A: Statistical Mechanics and its Applications, 2004, 3-4:559-566.
  • 7Nelson D. B. Conditional Heteroskedasticity in Asset Returns: A New Approach [J]. Econometriea, 1991, 59:347-370.
  • 8Nelson, D. B. and C. Q. Cao. Inequality Constraints in the Univariate GARCH Model[J].Journal of Business and Economic Statistics, 1992, 10 : 229- 235.
  • 9David Ranson, H. C. Wainwright and Co. Economics. Inflation protection: why gold works better than "linkers" [R]. World Gold Council report, 2005.
  • 10Brian M. Lueey and Edel Tully. Seasonality, risk and return in daily COMEX gold and silver data 1982 -2002 [J].Applied Financial Economies, 2006, 5: 319 - 333.

二级参考文献46

共引文献169

同被引文献16

  • 1高松,李琳,史道济.平稳序列的POT模型及其在汇率风险价值中的应用[J].系统工程,2004,22(6):49-53. 被引量:12
  • 2刘国光,王慧敏.沪深股市收益分布尾部特征研究[J].数理统计与管理,2005,24(3):108-112. 被引量:9
  • 3Basak S., Shapiro A. Value-at-risk-based Risk Management: Optimal Policies and Asset Prices[J]. Review of Finance, 2001,14 (2).
  • 4Cai J., Cheung Y.L. and Wong M.C.S. What Moves the Gold Market? [J].Journal of Futures Markets, 2001,21(3).
  • 5Dupuis D. Estimating the Probability of Obtaining Non Feasible Parameter Estimates of the Generalized Pareto Distribution[J].Journal of Statistics Computation and Simulation, 1996, 56(1).
  • 6Koedij K.G., Schafgans M. A. and DeVries C. G. The Tail Index of Exchange Rate Returns[J].Journal of International Economics, 1990, 29 (1/2).
  • 7Mcneil. Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory[M]. Astin Bulletin, Math.Ethz.ch, 1997.
  • 8Reiss R. D., Thomas M. Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields[M].Basel: Birdhouse Verlag,2001.
  • 9TueyS.Tsay.金融时间序列(第2版)[M].人民邮电出版社,2009.
  • 10桂文林.上证股指极值模型估计和VaR计算[J].数学的实践与认识,2008,38(19):66-73. 被引量:5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部