期刊文献+

一种基于非线性补偿技术的混合模式65nmCMOS带隙基准源 被引量:1

A nonlinearity correction based mixed mode bandgap reference in 65nm CMOS
下载PDF
导出
摘要 通过对当前已有的两种低温漂带隙电压源进行分析和总结,提出了一种新型温度补偿技术。采用双端分段非线性补偿、对数项消除技术以及混合模式拓扑输出方式,设计了一种具有高温度稳定性的带隙电压基准源。整个电路基于65rimCMOS工艺实现,并成功应用于一种65nmCMOS触摸屏控制器中。当电源电压为2.5V时,带隙电压源的输出为949mV。当温度在-40℃-125℃范围变化时,输出电压仅变化0.44mV,温度系数约为2.87ppm/℃,非常符合高精度SoC的应用。 Through the review and analysis of two recently reported low temperature coefficient bandgap voltage references, a novel temperature compensation technique is proposed in this paper. With the double-end piecewise nonlinearity correction method, logarithm cancellation technique and the mixed mode output, a bandgap reference (BGR) with high temperature stability is realized based on 65nm CMOS process. This voltage reference has been used in a 65nm CMOS touch screen controller (TSC) and produces an output voltage of about 949mV with 2.5V supply voltage. The output voltage varies by only 0.44mV from -40℃ to 125℃, and the temperature coefficient is less than 2.87ppm/℃. The design results show that this BGR is very suitable for high precision SoC applications.
出处 《电路与系统学报》 CSCD 北大核心 2010年第3期13-18,共6页 Journal of Circuits and Systems
基金 国家自然科学基金(60725415 60971066 60676009 60776034 60803038) 国家863计划(2009AA01Z258 2009AA01Z260) 国家重大科技专项资助项目(2009ZX01034-002-001-005)
关键词 带隙基准 分段非线性补偿 混合模式 互补金属氧化物半导体 低温度系数 bandgap reference nonlinearity correction mixed mode CMOS low temperature coefficient
  • 相关文献

参考文献3

二级参考文献17

  • 1朱樟明,杨银堂.一种10-ppm/~oC低压CMOS带隙电压基准源设计[J].电路与系统学报,2004,9(4):118-120. 被引量:21
  • 2Tesch B J, Pratt P M, et al. 14-b 125 MSPS Digital-to-Analog Converter and Bandgap Voltage Reference in 0.5um CMOS [A]. Proc. Of the IEEE 1999 ISCAA'99 [C]. Orlando, FL, USA., 1998-06: 452-455.
  • 3Banba H, Siga H, Umezawa A, Miyaba T. A CMOS Bandgap Reference with Sub-1-V Operation [J]. IEEE Journal of Solid-State Circuits, 1999, 34(5): 670-674.
  • 4Boni Andrea. Op-Amps and Startup Circuits for CMOS Bandgap References With Near 1-V Supply [J]. IEEE Journal of Solid-State Circuits, 2002, 37(10): 1339-1342.
  • 5Malcovati P, Maloberti F, Pruzzi M, et al .Curvature compensated BiCMOS bandgap with 1 V supply voltage [J]. IEEE J Solid-State Circuits, 2001, 36(7): 1076.
  • 6KerM D,C hen J S. New curvature-compensation technique for CMOS bandgap voltage reference with sub-IV operation [J]. IEEE Trans Circuits Syst II; Express Briefs, 2006, 53(8): 667.
  • 7Gunawan M, Meijer G C M, Fonderie J, et al. A Curvature-Corrected Low-Voltage Bandgap Reference [J]. IEEE Journal of Solid-State Circuits, 1993, 28(6): 667.
  • 8Bendali A, Savaira Y. Low-voltage bandgap reference with temperature compensation based on a threshold voltage technique [J]. IEEE International Symposium on Circuits and Systems, 2002, 3: 201.
  • 9Aldokhaiel A, Yamazuki A, Ismail M. A Sub-I Volt CMOS Bandgap Voltage Reference Based on Body Drive- n Technique [A]. The 2nd Annul IEEE Northeast Workshop on Circuits and Systems [C]. 2004.5.
  • 10Tsividis Y P. Accurate analysis of temperature effects in IC-VBEcharacteristics with application to bandgap reference sources [J]. IEEE J Solid-State Circuits, 1980, 15(12): 1076.

共引文献28

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部