期刊文献+

基于蚁群算法的矿井提升机减速器齿轮故障诊断 被引量:2

Mine hoist reducer gear failure diagnosis based on ant colony algorithm
下载PDF
导出
摘要 在研究蚁群优化神经网络训练算法的基础上,建立了矿井提升机减速器齿轮故障诊断模型。根据实测数据,分析研究信号并提取信号特征值,并应用训练后的BP神经网络诊断齿轮故障,实验表明效果良好,该模型网络的收敛速度大大提高,避免陷入局部最优解,用于减速器齿轮故障诊断准确可靠。 On the basis of researching the optimization of neural network through ant colony algorithm,the mine hoist reducer gear failure diagnosis model is established. According to the measured data,the signal is analyzed and researched,and the characteristic value of signal is extracted to apply to the trained BP neural network diagnosis to gear failure. The experiment shows that the effect is good,the convergence speed of this model network is greatly increased to avoid local optimization solution,and it is precise and reliable in the reducer gear failure diagnosis.
出处 《起重运输机械》 2010年第6期63-66,共4页 Hoisting and Conveying Machinery
关键词 蚁群算法 神经网络 矿井提升机 减速器 齿轮 故障诊断 any colony algorithm neural network mine hoist reducer gear failure diagnosis
  • 相关文献

参考文献5

二级参考文献12

  • 1蔡念,胡匡祜,李淑宇,苏万芳.小波神经网络及其应用[J].中国体视学与图像分析,2001,6(4):239-245. 被引量:31
  • 2张邦礼,李银国,曹长修.小波神经网络的构造及其算法的鲁棒性分析[J].重庆大学学报(自然科学版),1995,18(6):88-95. 被引量:21
  • 3Zhan Q,Benveniste A.Waveler Network[J].Proc of IEEE Trans.on Neural Network,1992,3 (6):889-898.
  • 4Shi Y,Eberbart R C.A Modified Swarm Optimizer.IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,1998.
  • 5Eberhart,Shi Y.Partiale swarm optimization:developments,applications,and resources.Proceedings of the IEEE Congress on Evolutionary Computation,Piscataway,NJ:IEEE Service Center,2001,81-86.
  • 6Simon Haykin.神经网络原理.北京:机械工业出版社,2004.
  • 7M.Dorigo.Optimiztion,Learning and Natural Algorithma.Ph.D.Dipartimento di Electronica,Politecnico di Milano,IT,1992(in Italian).
  • 8M.Dorigo,V.Maniezzao,A.Colorni.The Ant System:optimization by a colony of cooperating agents.IEEE Transactions on systems,Man,and Cybernetics-PartB.1996,26(1):29-41.
  • 9马良.来自昆虫世界的寻优策略——蚂蚁算法[J].自然杂志,1999,21(3):161-163. 被引量:89
  • 10赵学智,邹春华,陈统坚,叶邦彦,彭永红.小波神经网络的参数初始化研究[J].华南理工大学学报(自然科学版),2003,31(2):77-79. 被引量:56

共引文献26

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部