期刊文献+

柴油机进气-压缩过程的三维瞬态数值模拟研究 被引量:1

3D Transient Numerical Simulation for Intake-compression Processes of Diesel Engine
下载PDF
导出
摘要 应用动网格技术,对某柴油机在进气和压缩过程中气道-气门-气缸内的瞬态流场进行了数值模拟。模拟结果表明:在进气过程初期,缸内气流运动是紊乱的;随后,逐渐形成多个小涡流;到进气过程中后期,单一大尺度进气涡流形成并逐步得到发展、稳定和加强。而压缩过程初期,在进气涡流继续保持的同时,压缩涡流形成;到压缩过程后期,挤压涡流出现,气流以螺旋方式从气缸进入燃烧室,同时缸内的滚流逐渐加强。压缩过程中缸内气体的平均湍动能随曲轴转角的增大呈先减小后增大再减小的趋势。压缩上止点附近气缸边缘的湍动能很弱,而气缸中部挤流区域的湍动能则相对很强。水平方向的涡流、轴线方向的滚流以及湍动能的这种分布特性都有利于燃油的雾化以及与空气的混合。 Dynamic simulation is carried out to study the transient intake and in-cylinder flow generated during intakecompression processes using CFD code Fire. Well convergent results show formation and development of swirl, squish, tumble and turbulence. In-cylinder flow generated during intake process is disorganized at the beginning, and then it develops into a large number of small-scale swirls, which develop into a single stable large-scale swift at the later half of intake process. At the beginning of compression process, intake swirl is maintained and compression swift is generated, while at the end squish comes into being when helical flow moves from cylinder to combustion chamber. At the same time, in-cylinder tumble is strengthened gradually. With the increase of crank angle, the mean kinetic energy of in-cylinder turbulence during compression process decreases at first, then increases and finally decreases again. At the end of compression process, the turbulent kinetic energy of flow around the edge of cylinder is weak, while that of squish in the middle is relatively strong. Horizontal swirl, axial tumble and the distribution of turbulent kinetic energy are very important for fuel atomization and mixture formation.
出处 《内燃机》 2010年第3期23-27,共5页 Internal Combustion Engines
关键词 柴油机 数值模拟 涡流 滚流 湍动能 diesel engine numerical simulation swirl tumble turbulence kinetic energy
  • 相关文献

参考文献4

二级参考文献34

  • 1Aoyagi Y,Yokota H,Sugihara H,瞿俊鸣.4气门直喷式柴油机的涡流形成过程[J].国外内燃机,1996,28(1):11-16. 被引量:8
  • 2吴志军.四气门柴油机进气流动及缸内空气运动规律的研究[M].长春:吉林工业大学汽车工程学院,1999..
  • 3常思勤.[D].湖北:华中理工大学,1998.
  • 4Bicen A F, Wtfitelaw J H. Steady and Unsteady Flow through an Intake Valve[C]. Imperial College Report FS/83/11, London: 1983.
  • 5Tang-Wei Kuo. Multidimensional Port-and-Cyhnder Gas Flow, Fuel Spray, and Combustion Calculations for a Port-Fuel-Injection Engine[C]. SAE 920515, 1992.
  • 6Kang Y Huh. Scavenging Flow Simulation of a Four Poppet-Valved Two-Stroke Engine[ C]. SAE 930500, 1993.
  • 7Wolf Bauer, John B Heywood. Flow Characteristics in Intake Port of Spark Ignition Engine Investigated by CFD and Transient Gas Temperature Measurement[ C]. SAE 961997, 1996.
  • 8Rutland C J, Pieper C M, Hessel R. Intake and Cylinder Flow Modeling with a Dual-Valve Port [ C]. SAE 930069,1993.
  • 9Kim W T, Huh K Y, Lee J W, et al . Numerical Simulation of Intake and Compression Flow in a Four-Valve Pent-Roof Spark Ignition Engine and Validation with LDV Data[C].Proc Instn Mech Engrs, 2000, 214 (Part D) : 361 - 372.
  • 10Mattavi J N, Amann C A eds. Combustion modeling in Reciprocating Engines[M]. New York: Plenum press, 1980.

共引文献21

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部