期刊文献+

一类求解带随机成本的生产运输问题的线性逼近方法 被引量:4

Linear Approximation Algorithm for Production and Transportation Schedule Problems with Stochastic Cost
下载PDF
导出
摘要 生产和运输集成计划问题在许多工业工程领域都普遍存在。要给出最优的生产和运输计划就必须考虑实际工业管理过程中存在的不确定性因素。本文研究了生产厂家的生产能力、商家的需求量和单位运输成本等因素为随机变量情况下的产品生产与运输成本问题,建立了该类问题的随机优化模型。在一定的假设条件下,推导了所建模型的确定等价类。基于问题的结构特征,提出了求解生产和运输计划的一种线性逼近方法,数值例子表明该种方法的应用前景。 The integrated production and transportation scheduling problems are very common in many fields of industrial engineering. An optimal scheme of production and transportation should be involved with some nondeterministic behaviors existing in the industrial management. In this paper, we construct a stochastic optimization model for production and transportation scheduling problem, where all of the capacities of production and transportation, the cost and the demand are stochastic. Under some settings, we derive the deterministic equivalent formulation of the original problem. Based on the structural features of the model, we have developed a linearization approximation algorithm for this class of problems. Numerical examples show that both the proposed model and the solution method are promising.
出处 《工程数学学报》 CSCD 北大核心 2010年第3期381-388,共8页 Chinese Journal of Engineering Mathematics
基金 教育部新世纪优秀人才支持计划(NCET-07-0864) 国家自然科学基金(60804037)~~
关键词 生产运输问题 随机优化模型 线性逼近方法 确定等价类 production and transportation scheduling problem stochastic optimization model linearization approximation method deterministic equivalent formulation
  • 相关文献

参考文献9

  • 1万中,阳彩霞,江卫,王雅琳.生产运输成本问题的随机优化模型及新的求解途径[J].模糊系统与数学,2009,23(3):145-151. 被引量:8
  • 2Konno H, Egawa T. Computational studies on large scale concave cost transportation problems[J]. Pacific Journal of Optimization, 2006, 2(2): 327-339.
  • 3Yahia Z M, Ahmad Daneshmand. A linear approximation method for solving a special class of the chance constrained programming problem[J]. European Journal of Operational Research, 1995, 80:2134225.
  • 4Kataoka S. A stochastic programming model[J]. Econometrica, 1963, 31:181-196.
  • 5Miller B L, Wagner H M. Chance-constrained programming with joint constraints[J]. Operations Research, 1965, 13:930-945.
  • 6Adulbham P, Tabucanon M T. Bicriteria linear programming[J]. Computers and Operations Research, 1977, 4:147-153.
  • 7Hillier F S. Chance-constrained programming with 0-1 or bounded continuous decision variables[J]. Management Science, 1967, 14:34-57.
  • 8Birge J R, Louveaux F. Introduction to Stochastic Programming[M]. New York: Springer-Verlag, 1997.
  • 9刘宝碇 赵瑞清.随机规划与模糊规划[M].北京:清华大学出版社,2001..

二级参考文献6

  • 1Abdelaziz F B, Aouni B, Fayedh R E. Multi-objective stochastic programming for portfolio selection[J]. European Journal of Operational Research, 2005,177 : 1811- 1823.
  • 2Konno H, Egawa T. Computational studies on large scale concave cost transportation problems[J]. Pacific Journal of Optimization, 2006,2 (2) : 327- 339.
  • 3Birge J R, Louveaux F V. Introduction to stochastic programming[M]. New York :Springer,1997.
  • 4汪振鹏,缪铨生.概率与数理统计[M].上海:华东师范大学出版社,2000.
  • 5万中,阳彩霞,江卫.生产和运输成本问题的机会约束规划方法[Z].长沙,2007.
  • 6Yahia Z M, Daneshmand A. A linear approximation method for solving a special class of the chance congstrained programming problem[J]. European Journal of Operational Research, 1995,80 : 213-225.

共引文献25

同被引文献36

  • 1汪振鹏,缪铨生.概率与数理统计[M].上海:华东师范大学出版社,2000.
  • 2Danzig G B. Liner programming under-uncertainty[J]. Management Science, 1959, 1: 197-206.
  • 3Zoutendijk G. Maximizing a function in a convex region[J]. Journal of the Royal Statistical Society 1959, 21: 338-355.
  • 4Panne V D and Popp W. Minimum cost cattle feed under probabilistic protein constraints[J]. Management Science 1963, 9: 405-430.
  • 5Hillier f s. Chance-constrained programming with 0-1 or bounded continuous decision variables[J]. Management Science 1967, 14: 34-57.
  • 6Seppala y. Constructing sets of uniformly tighter linear approximations for a chance-constraint[J]. Management Science, 1971, 17: 736-749.
  • 7Olson D L and Swenseth S R. A linear approximation for chance constrained programming[J]. Journal of the Operational Research Society, 1987, 38: 261-267.
  • 8Weintraub A and Vera J. A cutting plane approach for chance constrained linear programs[J]. Operationa Research 1991, 39(5): 776-770.
  • 9Yahia Z M and Ahmad Daneshmand. A linear approximation method for solving a special class of the chance congstrained programming problem[J]. European Journal of Operational Research, 1995, 80: 213-225.
  • 10Charnes A and Cooper W W. Chance-constrained programming[J]. Management Science, 1962, 6: 73-79.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部