期刊文献+

缺失数据下两线性模型中响应变量分位数差异的经验似然置信区间 被引量:2

Empirical Likelihood Confidence Intervals for Quantile Differences of Response Variables in Two Linear Regression Models with Missing Data
下载PDF
导出
摘要 总体差异的比较是医学,经济和教育领域中经常遇到的课题,本文讨论缺失数据情形下两线性模型中响应变量分位数差异的经验似然置信区间的构造。我们采用分数线性回归填补法对响应变量的缺失值进行补足,得到两线性回归模型的"完全"样本数据,在此基础上构造响应变量分位数差异的对数经验似然比统计量,在一定条件下证明了统计量的极限分布为加权χ12,并利用此结果构造分位数差异的经验似然置信区间。模拟结果表明在分数填补下得到的置信区间具有较高的覆盖精度。 The comparison of di?erences of populations is an important research topic in medical studies, economical and educational fields. This paper studies the construction of the quantile differences of response variables in two linear models with missing data. The fractional linear regression imputation method is used to impute the missing data of the response variables, and ‘complete’ data for two linear regression models are obtained. The empirical log-likelihood ratios of quantile differences of response variables are constructed based on the imputed data. Under some mild conditions, it is proved that the asymptotic distributions for the empirical log-likelihood ratios are scaled χ_1~2. The empirical likelihood confidence intervals for quantile differences of the response variables are then constructed based on this results. Simulations show that fractional imputation can improve the coverage accuracy of confidence intervals.
出处 《工程数学学报》 CSCD 北大核心 2010年第3期463-478,共16页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10971038) 广西科学基金(0728092) 教育部留学回国人员科研启动资金([2004]527) 广西研究生教育创新计划资助项目(桂学位[2006]40)~~
关键词 线性模型 分位数 分数线性回归填补 经验似然 置信区间 linear model quantile fractional linear regression imputation empirical likelihood confidence intervals
  • 相关文献

参考文献16

二级参考文献80

  • 1高集体,陈希孺,赵林城.部分线性模型中估计的渐近正态性[J].数学学报(中文版),1994,37(2):256-268. 被引量:41
  • 2高集体,洪圣岩,梁华,施沛德.半参数回归模型研究的若干进展[J].应用概率统计,1994,10(1):96-104. 被引量:15
  • 3[1]Adimari G. Empirical likelihood type confidence intervals under random censorship [J]. Ann. Inst. Statist.Math., 1997, 49(3): 447-446.
  • 4[2]Adimari G. An empirical likelihood statistic for quantiles [J]. J. Statist. Comput. Simul., 1998, 60(1):85-95.
  • 5[3]Barnard J & Rubin D B. Small-sample degrees of freedom with multiple imputation [J]. Biometrika, 1999,86: 948-955.
  • 6[4]Carroll R J & Wand M P. Semiparametric estimation in logistic measure error models [J]. J. Roy. Statist.Soc. Ser. B, 1991, 53: 652-663.
  • 7[5]Chen Songxi. On the accuracy of empirical likelihood confidence regions for linear regression model [J].Annals of the Institute of Statistical Mathematics, 1993, 45: 621-637.
  • 8[6]Chen Songxi & Hall P. Smoothed empirical likelihood confidence intervals for quantile [J]. The Annals of Statistics, 1993, 21(3): 1166-1181.
  • 9[7]Chen Songxi. Empirical likelihood confidence intervals for linear regression coefficients [J]. Journal of Multivariate Analysis, 1994, 49: 24-40.
  • 10[8]Chen Songxi. Empirical likelihood confidence intervals for nonparametric density estimation [J]. Biometrika,1996, 83(2): 329-341.

共引文献51

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部