摘要
本文研究了定义在度量空间上的向量均衡系统解的存在性问题。利用非线性标量化方法,将向量优化问题转化为数量优化问题,得到了Ekeland变分原理的一个向量形式推广。用向量形式Ekeland变分原理,证明了向量均衡系统解的存在性定理。结果表明,如果函数满足向量形式Ekeland变分原理和上半连续性条件,那么向量均衡系统的解集非空。
This paper studies the existence of solutions for the system of vector equilibrium problem on metric spaces. By using the nonlinear scalarilization method, vector optimization problems are transformed into scalar optimization problems. Sequentially, the Ekeland’s variational principle is generalized to the vector form Ekeland’s variational principle.Using the vector form Ekeland’s variational principle, we establish an existence theorem for the system of vector equilibrium problem. Our results show that, if the function satisfies the vector form Ekeland’s variational and the upper semi-continuity assumption, then the set of solutions for the system of vector equilibrium problem is nonempty.
出处
《工程数学学报》
CSCD
北大核心
2010年第3期562-566,共5页
Chinese Journal of Engineering Mathematics
基金
综合业务网理论与关键技术国家重点实验室基金(1991DA105545)~~
关键词
向量均衡
向量均衡系统
EKELAND变分原理
近似解
vector equilibrium problems
system of vector equilibrium problems
Ekeland’s variational principle
approximate solution