期刊文献+

Ekeland变分原理导出的向量均衡系统解的存在性 被引量:1

Existence for System of Vector Equilibriums via Ekeland’s Principle
下载PDF
导出
摘要 本文研究了定义在度量空间上的向量均衡系统解的存在性问题。利用非线性标量化方法,将向量优化问题转化为数量优化问题,得到了Ekeland变分原理的一个向量形式推广。用向量形式Ekeland变分原理,证明了向量均衡系统解的存在性定理。结果表明,如果函数满足向量形式Ekeland变分原理和上半连续性条件,那么向量均衡系统的解集非空。 This paper studies the existence of solutions for the system of vector equilibrium problem on metric spaces. By using the nonlinear scalarilization method, vector optimization problems are transformed into scalar optimization problems. Sequentially, the Ekeland’s variational principle is generalized to the vector form Ekeland’s variational principle.Using the vector form Ekeland’s variational principle, we establish an existence theorem for the system of vector equilibrium problem. Our results show that, if the function satisfies the vector form Ekeland’s variational and the upper semi-continuity assumption, then the set of solutions for the system of vector equilibrium problem is nonempty.
作者 成波 刘三阳
出处 《工程数学学报》 CSCD 北大核心 2010年第3期562-566,共5页 Chinese Journal of Engineering Mathematics
基金 综合业务网理论与关键技术国家重点实验室基金(1991DA105545)~~
关键词 向量均衡 向量均衡系统 EKELAND变分原理 近似解 vector equilibrium problems system of vector equilibrium problems Ekeland’s variational principle approximate solution
  • 相关文献

参考文献10

  • 1Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems[J]. Math Student, 1994, 63:123-145.
  • 2Ansari Q H, Yao J C. An existence result for the generalized vector equilibrium problem[J]. Applied Mathematics Letters, 1999, 12:53-56.
  • 3曾六川.广义集值强非线性混合似变分不等式解的存在性与算法(英文)[J].工程数学学报,2006,23(2):324-332. 被引量:2
  • 4Ansari Q H, Schaible S, Yao J C. System of vector equilibrium problems and its applications[J]. 3ournal Optimization Theory and Application, 2000, 107:547-557.
  • 5Bianchi M, Kassay G, Pini R. Ekeland's principle for vector equilibrium problems[J]. Nonlinear Analysis, 2007, 66:1454-1464.
  • 6Ansari Q H. Vectorial form of ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory[J]. Journal of Mathematical Analysis and Applications, 2007, 334:561-575.
  • 7RUDIN W.数学分析原理[M].北京:机械工业出版社,2004,1.
  • 8Gerth C, Weidner P. Nonconvex separation theorems and some applications in vector optimization[J]. Journal of Optimization Theory and Applications, 1990, 67:297-320.
  • 9Chen G Y, Yang X Q, Yu H. A nonlinear scalarization function and generalized quasi-vector equilibrium problems[J]. Journal of Global Optimization, 2005, 32:451-466.
  • 10Bianchi M, Pini R. Coercivity conditions for equilibrium problems[J]. Journal of Optimization Theory and Applications, 2005, 124:79-92.

二级参考文献1

共引文献3

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部