期刊文献+

Weibull分布兴趣参数的广义置信区间 被引量:2

Generalized Confidence Intervals for Interest Parameters of the Weibull Distribution
下载PDF
导出
摘要 Weibull分布可以用来描述疲劳失效、真空管失效和轴承失效等,是重要的寿命分布。本文研究了Weibull分布尺度参数、形状参数、分位数及可靠度函数的广义置信区间问题。利用广义枢轴量给出四个兴趣参数的广义置信区间。证明了由广义枢轴量确定的四个兴趣参数的广义置信区间具有频率意义下的实际置信水平。 The Weibull distribution, a kind of important life distributions, can be used to describe fatigue failure, vacuum tube failure and bearing failure, etc. In this paper, the generalized confidence intervals for the scale parameter, the shape parameter, the percentile and the reliability function of the Weibull distribution are investigated. Generalized confidence intervals of four interest parameters are constructed by using the concept of generalized pivotal quantity. At last, we prove that they have the exact confidence levels in sense of frequency.
出处 《工程数学学报》 CSCD 北大核心 2010年第3期567-570,共4页 Chinese Journal of Engineering Mathematics
基金 北方工业大学校科研基金~~
关键词 WEIBULL分布 兴趣参数 广义置信区间 Weibull distribution parameters of interest generalized confidence intervals
  • 相关文献

参考文献4

  • 1Lawless J F. Statistical Models and Methods for Lifetime Data[M]. New York: Wiley, 1982.
  • 2Rekkas M, Wong A. Third-order inference for the Weibull distribution[J]. Computational Statistics 8z Data Analysis, 2005, 49(2): 499-525.
  • 3Weerahandi S. Generalized confidence intervals[J]. Journal of the American Statistical Associaation, 1993, 88(423): 899-905.
  • 4徐兴忠,李国英.枢轴分布族中的Fiducial推断[J].中国科学(A辑),2006,36(3):340-360. 被引量:13

二级参考文献32

  • 1Fisher R A.Statistical Methods and Scientific Inference.London:Oliver and Boyd,1956.
  • 2Fraser D A S.On fiducial inference.Ann Math Statist,1961,32:661~671.
  • 3Fraser D A S.The fiducial method and invariance.Biometrika,1961,48:261~280.
  • 4Fraser D A S.The Structure of Inference.New York:Wiley,1968.
  • 5Hora R B,Buehler R J.Fiducial theory and invariant estimation.Ann Math Statist,1966,37:643~656.
  • 6Hora R B,Buehler R J.Fiducial theory and invariant prediction.Ann Math Statist,1967,38:795~801.
  • 7Dawid A P,Stone M.The functional model basis of fiducial inference.The Annals of Statistics,1982,10:1054~ 1067.
  • 8Fisher R A.Inverse probability.Proc Cambridge Philos Soc,1930,26:528~535.
  • 9Fisher R A.Contributions to Mathematical Statistics.New York:John Wiley & Sons,Inc,1950.
  • 10Dawid A P,Wang J.Fiducial prediction and semi-Bayesian inference.The Annals of Statistics,1993,21:1119~1138.

共引文献12

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部