期刊文献+

膜结构风振中流固耦合效应的数值模拟研究 被引量:4

Numerical simulation of fluid-structure interaction in wind-induced vibration of membrane structures
下载PDF
导出
摘要 对膜结构风致振动中的流固耦合效应进行了数值模拟研究。采用数值模拟方法中的强耦合整体方法,引入伪实体模型,通过伪实体模型方程,流体方程与结构方程的隐式弱形式来构成整个体系的强耦和整体式方程。采用该方法对双坡型膜结构在考虑和不考虑耦合效应下的风振响应等重要参数进行了计算分析,并将计算结果与已有风洞试验结果进行对比,结果符合良好。同时计算了结构周围空气的风速矢量、压力场分布,得到了空气流体场的变化规律。结果表明采用强耦合整体方法计算所得的解具有很好的收敛性,可以较准确地预测膜结构的风致动力响应。 The fluid-structure interaction in the wind-induced vibration of membrane structures is studied by using numerical simulation. The simultaneous strong coupled method is proposed by introducing the pseudo-solid model. The simultaneous strong coupled formulation of the system is achieved through the implicit weak form of fluid formulation, structural formulation and pseudo-solid formulation. The method is applied to study the key parameters such as wind-induced responses of double-slope and membrane structures, when considering and not considering the interaction effects. And the results are compared with those obtained in wind tunnel experiment. Meanwhile, the wind velocity and the pressure field distribution around membrane structures are calculated, and the changing rules of air flow are obtained. Solutions obtained by using the simultaneous strong coupled method has good convergence. The simultaneous strong coupled method can accurately predict the wind-induced dynamic responses of the membrane structures.
出处 《地震工程与工程振动》 CSCD 北大核心 2010年第3期136-140,共5页 Earthquake Engineering and Engineering Dynamics
基金 辽宁省教育厅基金(202183391) 辽宁工程技术大学博士科研启动基金(09-139)
关键词 膜结构风致振动 流固耦合效应 数值模拟 隐式弱形式 强耦合整体方法 wind-induced vibration of membrane structures fluid-structure interaction numerical simulation implicit weak form simultaneous strong coupled method
  • 相关文献

参考文献9

  • 1Matthies H G, Steindorf J. Partitioned strong coupling algorithms for fluid-structure interaction [ J ]. Computers & Structures, 2003,81 (8 - 11 ) : 805 -812.
  • 2Hermann G. Matthies, Jan Steindorf. Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction[ J]. Computers & Structures, 2002, 80 (27 - 30) : 1991 - 1999.
  • 3Namkooong K, Choi H Yoo. Computation of dynamic fluid-structure interaction in two-dimensional laminar flows using combined formulatlon[J]. Journal of Fluids and Strucutres, 2005,20:51 -69.
  • 4Kalro V, Tezduyar T E. A parallel 3 D Computational method for fluid-structure interactions in parachute systems [ J ]. Comput. Methods Appl. Mech. Engrg, 2000, 190:321 -332.
  • 5Breuer M, Gluck M, Jovivcic N, et al. High-performance computing: applications to the numerical simulation of turbulent flows[ J ]. Thermal Science, 2001,5(1): 47-74.
  • 6Halfmann A, Rank E, Gltiek M, et al. Computational engineering for wind-exposed thin-walled structures [ J ]. Lecture Notes in Computational Science and Engineering, 2002, 21:63-70.
  • 7Gluck M, Breuer M, Durst F, et al. Computation of wind-induced vibrations of flexible shells and membranous structures[ J ]. J. of Fluids and Structures, 2003, 17:739 -765.
  • 8Hubner B, Walhorn E, Dinkler D. Simultaneous solution to the interaction of wind flow and lightweight membrane structures[ C]// Proc. Int. Conf. On Lightweight Structures in Civil Engineering. Warsaw, 2002:519 -523.
  • 9孙芳锦,张大明,殷志祥.大跨度柔性屋盖风振中流固耦合分析的强耦合方法[J].地震工程与工程振动,2009,29(2):179-183. 被引量:8

二级参考文献11

  • 1周健,孔戈,张刚,秦天.基于耦合场分割算法的ANSYS二次开发及其应用[J].地震工程与工程振动,2006,26(2):73-79. 被引量:6
  • 2Melville R B, Morton S A. Fully implicit aeroelasticity on overset grid systems[ R]. AIAA Paper,1998:98 -0521.
  • 3Alonso J J, Jameson A. Fully- implicit time -marching aeroelastic solutions [R]. AIAA Paper, 1994:94 -0056.
  • 4Morton S A, Melville, R B, Visbal M R. Accuracy and coupling issues of aeroelastic Navier - Stokes solver [ R ]. AIAA Paper, 1997 : 97 - 1085.
  • 5Melville R B, Morton S A, Rizzetta D P. Implementation of a fully -implicit aeroelastic Navier- Stokes solver[R]. AIAA Paper, 1997, 97 - 2039.
  • 6Liu F, Cai J, Zhu Y, et al. Calculation of wing flutter by a coupled CFD -CSD method[ R]. AIAA paper,2000:2000 -0907
  • 7Schichting H. Boundary-layer Theory[ M]. 7th ed. McGraw - Hill, New York, 1979.
  • 8Bathe K J. Finite element procedures in engineering analysis[ M]. Prentice - Hall, Englewood Cliffs, NJ, 1982.
  • 9Sackinger P A, Schunk P R, Rao P R. A Newton - Raphson pseudo - solid domain mapping technique for free and moving boundary problems : a finite element implementation [ J]. Journal of Computational Physics, 1996, 125 : 83 - 103.
  • 10Zienkiewicz O C, Zhu J Z. The superconvergent patch recovery aud a posteriori error estimates, Part 1 : the recovery technique[ J]. International Journal for Numerical Methods in Engineering, 1992,33:1331 - 1364.

共引文献7

同被引文献64

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部