摘要
采用权弱分担值的思想讨论两个亚纯函数fnf′,gng′权弱分担有理函数的唯一性,得到:设p(z),q(z)为两个互质的n1,n2次多项式,f,g为两个非常数超越亚纯函数,如果fnf′与gng′分担"(pq((zz)),m)"且(1)当2≤m≤∞时,满足n≥max{11,2n1+4n2+3};(2)当m=1时,满足n≥max{13,2n1+4n2+3};(3)当m=0时,满足n≥max{23,2n1+4n2+3},则f=c1Q(z)exp(α(z)),g=c2Q-1(z)exp(-α(z)),其中:c1,c2为2个常数且Q(z)是有理函数;α(z)为满足(c1c2)n+1(Q′(z)/Q(z)+α′(z))2≡(p(z)/q(z))2的多项式,或者f=tg,t为常数且满足tn+1=1.
In this paper,we study the uniqueness of two meromorphic functions fnf′,gng′ weakly weighted sharing a rational function and the following result is proved:let p(z),q(z) be two co-prime polynomials of n1,n2 respectively,let f,g be two non-constant transcendental meromorphic functions.If fnf′ and gng′ share "(p(z)q(z),m)" and(i) when 2≤m≤∞;n≥max{11,2n1+4n2+3};(ii) when m=1,n≥max{13,2n1+4n2+3};(iii) when m=0,n≥max{23,2n1+4n2+3},then f=c1Q(z)exp(α(z)),g=c2Q-1(z)exp(-α(z)),where c1,c2 are two constants,Q(z) is a rational function,and α(z) is a non-constant polynomial satisfying(c1c2)n+1(Q′(z)/Q(z)+α′(z))2≡(p(z)/q(z))2 or f=tg for a constant t satisfying tn+1=1.
出处
《泉州师范学院学报》
2010年第2期1-5,共5页
Journal of Quanzhou Normal University
关键词
权弱分担
亚纯函数
唯一性
weakly weighted sharing
meromorphic function
uniqueness