期刊文献+

高密度Si基半导体电容器的性能及其制作 被引量:1

Fabrication and Property of High Density Silicon-Based Semiconductor Capacitors
下载PDF
导出
摘要 随着各种混合信号电路的性能和集成度的迅速提高以及对电路模块和元器件小型化的需要,集成无源技术成为一种取代分立无源器件以达到小型化的解决方案。鉴于电容器被广泛用于滤波、调谐和电源回路退耦等各种板级集成封装中,采用Si MEMS工艺,在半导体表面深刻蚀三维(3D)图形以增大有效表面积,制作了一种高电容密度的半导体pn结退耦电容器,并分析研究了其主要制成工艺和性能。结果显示,所制作的电容器的电容密度达8~12nF/mm2,相比无表面三维刻蚀图形的半导体电容器电容密度增大了10倍以上,退耦频率范围为10kHz~3.2GHz,可用于中低频率较大范围内的退耦。 With the rapidly improvement of the performance and integration of the mixed-signal circuits and the growing miniaturization requirement of modules and components in electronic applications, the integrated passive technology becomes a potentially attractive solution to replace discrete passive devices. Capacitors are widely used in various board level integrated packages, including filtering, tuning and power circuit decoupling. Fabrication process and properties of the high density semiconductor pn junction decoupling capacitor for high frequency and high speed fields were investigated with silicon MEMS process based on the deep etching 3D patterns on the semiconductor surface. The results indicate that the capacitance density reaches 12 nF/mm^2 which is 10 times greater than that of the normal plane semiconductor capacitor, and the range of decoupling frequency is 10 kHz- 3.2 GHz, proving the outstanding reliability of the capacitor fabrication process. Thus the process is suitable for a wide rang of medium- and lowfrequency decoupling.
出处 《微纳电子技术》 CAS 北大核心 2010年第6期367-371,375,共6页 Micronanoelectronic Technology
基金 国家高技术研究发展(863)计划资助项目(2007AA01Z2a6) 02科技重大专项资助项目(2009ZX02038)
关键词 半导体电容 高密度电容 三维结构 退耦频率 ICP刻蚀 semiconductor capacitor high density capacitor 3D structure decoupling frequency ICP etch
  • 相关文献

参考文献10

  • 1SATOSHI K,YO T,TOSHIO S,et al.A study on broad-band switching noise reduction by embedding high-density thin-film capacitor in a laminate package[C]//Proceedings of 2008 Electrical Design of Advanced Packaging and Systems Symposium.Seoul,Korea(South),2008:73-76.
  • 2SMITH L D,ANDERSON R E,FOREHAND D W,et al.Power distribution system design methodology and capacitor selection for modern CMOS technology[J].IEEE Transac.tions on Advanced Packaging,1999,22(3):284-291.
  • 3DREWNIAK J F J L,KNIGHTEN J L,SMITH N W,et al.Quantifying SMT decoupling capacitor placement in DC power-bus design for muhi-layer PCB[J].IEEE Trans on Electromagnetic Compatibility,2001,43(4):588-599.
  • 4MUTHANA P,SRINIVASAN K,ENGIN A E,et al.Im-provement in noise suppression for I/O circuits using embedded planer capacitors[J].IEEE Trans on Advanced Packaging.2008,31(2):234-245.
  • 5KIM H,PARK H,JEONG Y,et al.High Dielectric con-atant thin film embedded capacitor for suppression of simuha-neous switching noise and radiated emissions[C]//Procee-dings of International Symposium on Electromagnetic Compati-bility.Silicon Valley,USA,2004,2:588-591.
  • 6吕垚,李宝霞,万里兮.利用半导体pn结结电容构成的沟道式电容器[J].电子元件与材料,2009,28(10):11-14. 被引量:3
  • 7ROOZEBOOM F,KEMMEREN A,VERHOEVEN J,et al.Passive and heterogeneous integration towards a Si-based sys-tem-in-package concept[J],Thin Solid Films,2006,504(112):391-396.
  • 8FAROOQ M G.Interposer capacitor built on silicon wafer and joined to a ceramic substrate:US,6791133[P].2004-09-14.
  • 9樊中朝,余金中,陈少武.ICP刻蚀技术及其在光电子器件制作中的应用[J].微细加工技术,2003(2):21-28. 被引量:32
  • 10RANGANATHAN N.EBIN L,LINN L,et al.Integration of high aspect ratio tapered silicon via for silicon carrier fabri-cation[J].IEEE Transactions on Advanced Packaging,2009.32(1):62-71.

二级参考文献28

  • 1Premjeet C, Rao R T. A novel integrated decoupling capacitor for MCM-L technology [J]. IEEE Trails Compon, Packg, Manuf Technol, 1998,91(2): 184.
  • 2Raymond A S, Schenectady N Y. Voltage-variable capacitor with extendible PN junction region: USA, 3560815 [P]. 1971-02-02.
  • 3Te H. Reverse-biasd PN diode decoupling capacitor: USA, 7550820 [P]. 2008-05-29.
  • 4Dekker A D, Geelen A V. The nest technology for passive integration on silicon [C] // Electronic Components and Technology Conference. Reno, Nevada, USA: IEEE, 2007,.
  • 5Maeng J M, Song S S. Embedded decoupling capacitors up to 80 nF on multichip module-deposited with quasi-three-dimensional metalinsulator-metal structure [J]. Jpn J Appl Phys, 2008, 47(4): 2535-2537.
  • 6F A Khan, L Zhou, V Kumar, et al. High rate etching of AIN using BCl3/Cl2/Ar inductively coupled plasma[J]. Materials Science and Engineering,2002,B 95:51 - 54.
  • 7J Etrillard, J F Bresse, C Daguet,et al. Low damage dry etching of Ⅲ - V materials for heterojunction bipolar transistor applications using a chlorinated inductively coupled plasma[J]. J Vac Sci Technol, 1999,A 17(4) : 1174 - 1181.
  • 8B Ronga, E van der Drift, R J Reeves, et al. Inductively coupled plamaa etching of CaN and its effect on electrical characteristics[J]. J Vac Sci Technol, 2001,B19(6) : 2917- 2920.
  • 9Y J Lee, S W Hwang, G Y Yeom,et al. Etch- induced damage in single crystal Si trench etching by planar inductively coupled Cl2/N2 and Cl2/HBr plasmas[J ]. Thin Solid Films, 1999, (341) :168- 171.
  • 10S Bretoiu, D Di Mola, E Fioravanti, et al. Inductively coupled plasma etching for arrayed waveguide gratings fabrication in silica on silicon technology[J]. J Vac Sci Technol,2002, B 20(5) :2085 - 2090.

共引文献33

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部