期刊文献+

改进型量子蚁群算法求解QoS单播路由 被引量:1

Improved quantum ant colony algorithm for QoS unicast routing algorithm
下载PDF
导出
摘要 针对遗传以及蚁群算法在求解QoS单播路由问题时收敛速度慢和易于陷入局部最优的问题。采用量子蚁群算法求解QoS单播路由,采用量子旋转门实现蚂蚁的移动,用量子非门来实现蚂蚁位置的变异,同时为了确保算法不陷于局部最优,对量子蚁群算法做了改进,并进行了对比实验。实验表明该算法不但克服了遗传以及蚁群算法的易限于局部最优解的缺陷,在收敛速度上也优于相关算法,能较好地解决QoS单播路由问题。 For the genetic algorithm and ant colony algorithm solving QoS unicast routing problem is easily trapped into local optimization and has slow convergence.Ant colony algorithm is used to solve the quantum QoS unicast routing,quantum revolving doors are used to complete the ant movement,quantum nongates are used to realize ant location variation,and in order to ensure the algorithm is not trapped in local optimum,quantum ant colony algorithm is improved,and conductes comparative experiments related to the simulation.Experiments show that this algorithm not only overcomes the defects that the genetic algorithm and ant colony algorithm is easily trapped into local optimization and the convergence speed is also better than the ant colony algorithm.The QoS unicast routing problem can be better solved.
作者 曹建国 陶亮
出处 《计算机工程与应用》 CSCD 北大核心 2010年第18期116-118,共3页 Computer Engineering and Applications
关键词 QOS单播路由 量子蚁群 蚁群算法 路由 QoS unicast routing quantum ant colony ant colony algorithm routing
  • 相关文献

参考文献11

二级参考文献77

  • 1段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 2程志刚,陈德钊,吴晓华.连续蚁群优化算法的研究[J].浙江大学学报(工学版),2005,39(8):1147-1151. 被引量:9
  • 3李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 4段海滨,马冠军,王道波,于秀芬.一种求解连续空间优化问题的改进蚁群算法[J].系统仿真学报,2007,19(5):974-977. 被引量:74
  • 5MONMARCH N,VENTURINI G,SLIMANE M.On how Pochycondyla apicalis ants suggest a new search algorithm[J].Future Generation Computer Systems,2000,16:937-946.
  • 6DRo J,SIARRY P.A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions[C].Proc of the 3rd Int Workshop on Ant Algorithms ANTS'2002,Brussels,2002:216-221.
  • 7DRO J,SIARRY P.Continuous interacting ant colony algorithm based on dense hierarchy[J].Future Generation Computer Systems,2004,20 (5):841-856.
  • 8HYUN K,KIM J H.Quantum-inspired evolutionary algorithm for a class of combinational optimization[J].IEEE Transactions on Evolutionary Computing,2002,6(6):580-593.
  • 9HAN K H,KIM J H.Genetic quantum algorithm and its application to combinatorial optimization problem[C].Proceedings of the 2000 Congress on Evolutionary Computation,Piscataway,2000:1354-1360.
  • 10HAN K H,PARK K H,LEZ C H,et al.Parallel quantum-inspired genetic algorithm for combinatorial optimization problem[C].Proceedings of the 2001 Congress on Evolutionary Computation,IEEE Press,2001:1422-1429.

共引文献137

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部