期刊文献+

基于粗糙集和D-S证据理论的信息融合技术应用研究 被引量:2

Application research on information fusion technology based on rough set and D-S evidence theory
下载PDF
导出
摘要 针对井下信息量大、噪声多、参数多、动态等特征,提出了一种基于粗糙集数据挖掘和D-S证据理论优化信息融合技术的矿井环境监测方法。采用粗糙集对井下信息进行预处理;利用径向基函数(RBF)神经网络建立了井下环境识别模型;利用D-S证据理论进行两级融合决策,并对井下安全状况进行判断。仿真结果表明:该方法提高了井下信息的识别和决策效果,极大地降低了不确定性。 Aimed at the characteristics of coal mine such as large quantity of information, much noises, many parameters and dynamic characteristics, etc. A coal mine environmental monitoring method of information fusion technology optimized by rough set data mining and D-S evidence theory are conducted. The rough set was carried out to deal with the information of coal mine. Distinguishing model of coal mine environment was established by using the radial basic function (RBF) neural network. Two-graded fusion decision was conducted by using D-S evidence theory to judge the security situation underground. The simulation results show that this method improved the identification and decision-making effects of coal mine environmental information, which greatly reduced the uncertainty.
作者 付华 聂小芳
出处 《传感器与微系统》 CSCD 北大核心 2010年第6期18-20,24,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(50874059) 辽宁省重大科技计划资助项目(2007231003) 辽宁省优秀人才基金资助项目(2007R24) 辽宁省创新团队基金资助项目(2007T071)
关键词 粗糙集 RBF神经网络 信息融合 D—S证据理论 矿井环境监测 rough set (RS) radial basic function (RBF) neural network information fusion D-S evidence theory coal mine environmental monitoring
  • 相关文献

参考文献2

二级参考文献10

共引文献19

同被引文献34

  • 1刘大鹏,卢虹冰,漆家学,吴巨海,苏毅.基于多小波变换的医学图像融合算法研究[J].中国医学物理学杂志,2011,28(3):2637-2643. 被引量:6
  • 2程华,杜思伟,徐萃华,等.基于Ds证据的信息融合算法多指标融合[J].华东理工大学学报:自然科学版,2011,37(4):133-137.
  • 3GUPTA V, KIRII.I H A, HENDRIKS E A, et al. Cardiac MR perfusion image processing techniques a survey[J]. Med Image Anal, 2012, 16(4) : 767-785.
  • 4LU H M, NAKASHIMA S, LI Y J, et al. An improved method for CT/MRI image fusion on bandelets transform do- main[J]. ApplMechMater, 2012, 103 700-704.
  • 5WANG L, LI B, TIAN L F. Multi-modal medical image fu- sion using the inter-scale and intra-scale dependencies between image shift invariant shearlet coefficients[J]. Inform Fusion, 2012, http=//dx, doi. org/10. 1016/j. inffus. 2012.03. 002.
  • 6LU B B, WANG H, MIAO C L. Medical image fusion with adaptive local geometrical structure and wavelet transform [J]. Procedia Environmental Sciences, 2 011,8 2 6 2- 2 6 9.
  • 7DANESHVAR S, GHASSEMIAN H. MRI and PET image fusion by combining IHS and retina-inspired models[J]. In- form Fusion, 2010,11 (2) 114-123.
  • 8LI T J, WANG Y Y. Multiscaled combination of MR and SPECT images in neuroimaging: a simplex method based vari able-weight fusion[J]. Comput Methods Programs Biomed, 2012, 105(1): 31-39.
  • 9OU G B, MURPHEY Y L. Multi-class pattern classification using neural networks[J]. Pattern Recognit, 2007, 40(1) : 4- 18.
  • 10CHEN Y T, WANG M S. Three-dimensional reconstruction and fusion for multi-modality spinal images[J]. Comput Med Imaging Grap,h, 2004, 28(1-2): 21-31.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部