期刊文献+

多目标进化算法在新安江模型参数率定中的应用比较研究 被引量:3

Comparison between Multi-objective Evolutionary Algorithms for Calibration of Xinanjiang Model
下载PDF
导出
摘要 为了克服传统优化技术在新安江模型参数率定中收敛慢、不稳定等缺点,近年来利用进化算法在水文模型的率定中得到越来越多的重视和发展,但对它们优选效果的比较讨论却非常少见。本文根据三水源新安江模型特点,以洪峰流量,峰现时间和洪水总量为优化目标,采用NSGA-Ⅱ、SPEA、PESA三种经典算法,通过对三种算法产生的非支配集进行算法评价,并比较了三种算法产生非支配集的收敛性与分布性,结果表明NSGA-Ⅱ在总体上最优。 Application of traditional methods to calibrate the Xinanjiang model will lead to disadvantages of slow convergence and instability.In order to overcome these disadvantages,the evolutionary algorithms towards the hydrological model calibration have been paid more and more attention,but the comparison of the algorithms is rarely discussed.According to the characteristics of the Xinanjiang model,the peak flow,peak time and flood volume were chosen as three criteria.The NSGA-II,SPEA and PESA were used for calibration and the results proved the effectiveness of the multi-objective evolutionary algorithms.The non-dominated set created by the algorithms was applied to test their performance of convergence and the distribution.The results indicate that the NSGA-II is better than the others.
出处 《水文》 CSCD 北大核心 2010年第3期38-42,共5页 Journal of China Hydrology
基金 水利部公益性行业科研项目(200801015) 华北水利水电学院高层次人才科研启动项目资助(200821)
关键词 多目标进化算法 NSGA-Ⅱ SPEA PESA 参数率定 新安江模型 multi-objective evolutionary algorithm NSGA-II SPEA PESA parameter calibration Xinanjiang model
  • 相关文献

参考文献9

  • 1Y.Tang, P.Reed, T.Wagener. How effective and effcieut are multiobjective evolutionary algorithms at hydrologic model calibration[J]. Hydrology and Earth System Sciences, 2006, (10) :289-307.
  • 2E. G. Bekele and J. W. Nicklow. Muhi-objective optimal control model for watershed management using SWAT and NSGA-II[A]. World Environmental and Water Resources Congress[C]. 2007:1-10.
  • 3Deb K, Pratap A, Agarwal S. A fast and elitist multi-objective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation ,2002,6(2) : 182-197.
  • 4Zitzler E, Thiele L. Muhiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach [J]. IEEE Transactions on Evolutionary Computation, 1999,3 (4) : 257-271.
  • 5Corned David W, Joshua D Knowles, Martin J Oates. The pareto envelope-based selection algorithm for muhiobjective optimisation [R] : Parallel Problem Solving from Nature (PPSN Ⅵ),2000:839- 848.
  • 6Deb K,Jain S. Running peiformance metrics for evolutionary multiobjective optimization[R]. Kanpur : Indian Institute of Technology, Tech. Report : 2002004,2002 : 1-18.
  • 7Li Xuyong, Jihua Zheng, Juan Xue. A diversity metric for multiobjective evolutionary algorithms[A]. The Congress on Natural Computation[C], 2005,68-73.
  • 8赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.106-130.
  • 9武新宇,程春田,赵鸣雁.基于并行遗传算法的新安江模型参数优化率定方法[J].水利学报,2004,35(11):85-90. 被引量:46

二级参考文献7

  • 1Rosenbrock H H.An automatic method for finding the greatest or least value of function [J].Computer Journal,1960,3:175-183.
  • 2Qingyun Duan,Soroosh Sorooshian,Vijai Gupta.Effective and efficient global optimization for conceptual rainfall-runoff models[J].Water Resources Research,1992,28(4):1015-1031.
  • 3Wang Q J.The genetic algorithm and its application to calibrating conceptual rainfall-runoff models[J].Water Resources Research,1991,27(9):2467-2471.
  • 4Franchini M. Using a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models[J].Hydrological Sciences Journal,1996,41(1):21-40.
  • 5Franchini M,Galeati G.Comparing several genetic algorithm schemes for the calibration of conceptual rainfall-runoff models[J].Hydrological Sciences Journal,1997,42(3):357-379.
  • 6Cheng C T,Ou C P,Chau K W.Combining a fuzzy optimal model with agenetic algorithm to solve multi-objective rainfall-runoff model calibration[J].Journal of Hydrology,2002,268:72-86.
  • 7Adam J.Ferrari JPVM:Network Parallel available from:http://www.cs.virginia.edu/-ajf2j/jpvm.html.

共引文献150

同被引文献34

  • 1胡震峰.雨水资源化在城市规划与建设中的现实意义[J].山西建筑,2004,30(15):19-20. 被引量:7
  • 2王薇,曾光明,何理.用模拟退火算法估计水质模型参数[J].水利学报,2004,35(6):61-67. 被引量:20
  • 3杨家宽,肖波,刘年丰,李进军,何归丽.WASP6预测南水北调后襄樊段的水质[J].中国给水排水,2005,21(9):103-104. 被引量:19
  • 4王超,延晓冬,黄耀,刘辉志.应用BIOME-BGC模型研究典型生态系统的潜热通量——半干旱地区吉林通榆的模拟[J].气候与环境研究,2006,11(3):404-412. 被引量:16
  • 5Arhonditsis G B, Brett M T. 2005. Eutrophication model for Lake Washington ( USA ) Part I. Model description and sensitivity analysis [J]. Ecological Modelling, 187:140-178.
  • 6Arhonditsis G B, Qian S S, Stow C A, et al. 2007. Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake[ J ]. Ecological Modelling, 208( 2/ 4) : 215-229.
  • 7Arioli Y, Bendoricchio G, Palmeri L, et al. 2005. Defining and modelling the coastal zone affected by the Po river (Italy) [ J ]. Ecological Modelling, 184( 1 ) : 55-68.
  • 8Beven K. 2012. Causal models as multiple working hypotheses about environmental processes[ J]. Comptes Rendus Geoscience, 344(2) : 77- 88.
  • 9Chao X B, Jia Y F, Shields F D Jr, et al. 2010. Three-dimensional numerical simulation of water quality and sediment-associated processes with application to a Mississippi Delta lake[ J~. Journal of Environmental Management, 91 (7) : 1456-1466.
  • 10Lin C E, Chen C T, Kao C M, et al. 2011. Development of the sediment and water quality management strategies for the Salt-water River, Taiwan[ J]. Marine Pollution Bulletin, 63(1/2) : 528-534.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部