摘要
给出智能组卷数据模型,采用遗传算法中编码、初始群体、迭代等步骤,利用交叉概率、变异概率和适合度判断迭代的收敛性,并产生适合规则的群体.对比遗传算法及其他组卷策略,遗传算法在组卷次数及组卷时间上优于传统的组卷策略.
Intelligence composing examination model is given in the paper.The suitable population can be generated by using coding,initial population,iterative steps in genetic algorithm,and crossover probability,mutation probability and fitness to judge the convergence of iterations.To compare genetic algorithms with other strategies in composing examination system,genetic algorithms is found to be superior to the traditional strategy in composing examination frequency and time consuming.
出处
《广东教育学院学报》
2010年第3期75-79,共5页
Journal of Guangdong Education Institute
关键词
组卷策略
遗传算法
适应度
基因
composing examination papers
Genetic Algorithm
fitness
gene