期刊文献+

群的几个幂零性条件

On Some Nilpotency Criteria for Groups
原文传递
导出
摘要 如果G的所有子群都是次正规的,而且G满足下面条件之一,那么G是幂零群.(1)G有一个次正规列1△H△K△G,其中K/H是幂零群,H和G/K是有限生成的;(2)G有一个正规子群N使得,N在其子集的中心化子上满足极小条件,并且G/N是有限生成的. If all subgroups of G are subnormal,then G is nilpotent if it satisfies one of the following conditions: (1) G has a subnormal series 1△ H△ K△ G,in which factor K/H is nilpotent,H and G/K are finitely generated; (2) G has a normal subgroup N such that N satisfies the minimal condition on centralizers and G/N is finitely generated.
出处 《数学进展》 CSCD 北大核心 2010年第3期271-276,共6页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10671058) 教育部博士点基金资助
关键词 幂零群 次正规子群 中心化子 nilpotent group subnormal subgroup centralizer
  • 相关文献

参考文献18

  • 1Robinson, D.J.S., A Course in the Theory of Groups(Second edition), New York: Springer-Verlag, 1996.
  • 2Lennox, J.C. and Stonehewer, S.E., Subnormal Subgroups of Groups, New York: Oxford University Press, 1987.
  • 3Roseblade, J.E., On groups in which every subgroup is subnormal, J. Algebra, 1965, 2: 402-412.
  • 4Heineken, H. and Mohamed, I.J., A group with trivial centre satisfying the normalizer condition, J. Algebra, 1968, 10: 368-376.
  • 5Mohres, W., Torsionsgruppen, deren Untergruppen alle subnormal sind, Geom. Ded., 1989, 16: 237-244.
  • 6Casolo, C., Torsion-free groups with all subgroups subnormal, Rend. Circ. Mat. Palermo, 2001, 250: 321-324.
  • 7Smith, H., Nilpotent-by-(finite exponent)groups with all subgroups subnormal, J. Group Theory, 2000, 3: 47-56.
  • 8Mohres, W., Auflosbarkeit Gruppen deren Untergruppen alle subnormal sind, Arch. Math., 1990, 54: 232- 235.
  • 9Mohres, W., Hyperzentrale torsionsgruppen,deren Untergruppen alle subnormal sind, Illiois J. Math., 1991, 35(1): 147-157.
  • 10Smith, H., Hypercentral groups with all subgroups subnormal, Bull. London Math. Soc., 1983, 15(3): 229-334.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部