摘要
如果G的所有子群都是次正规的,而且G满足下面条件之一,那么G是幂零群.(1)G有一个次正规列1△H△K△G,其中K/H是幂零群,H和G/K是有限生成的;(2)G有一个正规子群N使得,N在其子集的中心化子上满足极小条件,并且G/N是有限生成的.
If all subgroups of G are subnormal,then G is nilpotent if it satisfies one of the following conditions: (1) G has a subnormal series 1△ H△ K△ G,in which factor K/H is nilpotent,H and G/K are finitely generated; (2) G has a normal subgroup N such that N satisfies the minimal condition on centralizers and G/N is finitely generated.
出处
《数学进展》
CSCD
北大核心
2010年第3期271-276,共6页
Advances in Mathematics(China)
基金
国家自然科学基金(No.10671058)
教育部博士点基金资助
关键词
幂零群
次正规子群
中心化子
nilpotent group
subnormal subgroup
centralizer