期刊文献+

严格渐进伪压缩映象之修正型Mann迭代算法的强收敛性 被引量:5

Strong Convergence of Modified Mann Iteration for the Strictly Asymptotically Pseudocontractive Map
原文传递
导出
摘要 本文利用CQ方法获得了k-严格渐进伪压缩映象修正型迭代算法的强收敛结果.此结果推广并改进了T.H.Kim和徐洪坤2006年获得的相应的一主要结果.即,从渐进非扩张映象推广到k-严格渐进伪压缩映象,并且去掉了闭凸子集C的有界性假设条件. In this paper,the author considers the CQ method,and obtains a strong convergence theorem of modified Mann iteration for a k-strictly asymptotically pseudocontractive map. The main result obtained in this paper extends and improves the corresponding main result of Kim-Xu published in 2006 from an asymptotically nonexpansive mapping to a k-strictly asymptotically pseudocontractive one,and deletes the boundedness condition on the closed convex subset C.
作者 饶若峰
机构地区 宜宾学院数学系
出处 《数学进展》 CSCD 北大核心 2010年第3期283-288,共6页 Advances in Mathematics(China)
基金 四川省教育厅自然科学基金青年项目(No.08ZB002)
关键词 k-严格渐进伪压缩映象 CQ方法 最近点投影 k-strictly asymptotically pseudocontractive mapping the CQ method metric projection
  • 相关文献

参考文献1

二级参考文献13

  • 1Bauschke, H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl., 202, 150-159 (1996).
  • 2Halpern, B.: Fixed points of nonexpansive maps. Bull. Amer. Math. Soc., 73~ 957-961 (1967).
  • 3Lions, P.: Approximation de points fixes de contractions. C. R. Acad Sci. Paris Set. A-B, 284, 1357-1359 (1977).
  • 4John, G., O'Hara, P., Pillay an H, K, Xu,: Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces. Nonlinear Anal. TMA, 54, 1417-1426 (2003).
  • 5Shimizu, T., Takahashi, W.: Strong convergence to common fixed points of families of nonexpansive mappings. J. Math. Anal. Appl., 211, 71-83 (1997).
  • 6Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch Math., 58, 486-491 (1992).
  • 7Xu, H. K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl., 116(3), 659-678 (2003).
  • 8Zhou, Y. Y., Chang, S. S.: On the convergence of implicit iterative process for finite family of asymptotically nonexpansive mappings in Banach spaces. Numer. Funct. Anal. and Optimiz, 23, 911-921 (2002).
  • 9Goebel, K., Kirk, W. A.: Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, 1990.
  • 10Liu, L. S.: Ishikawa and Mann iterarive processes with errors for nonlinear strongly accretive mappings in Banach space. J. Math. Anal. Appl., 194, 114-125 (1995).

共引文献4

同被引文献28

  • 1饶若峰.一类含第一特征值具临界指数的半线性椭圆方程[J].西南师范大学学报(自然科学版),2004,29(4):549-552. 被引量:8
  • 2饶若峰.涉及第一特征值和临界指数的一类椭圆方程[J].数学进展,2004,33(6):703-711. 被引量:9
  • 3饶若峰.具临界指数椭圆方程-Δu=λ_κu+|u|^(2^*-2)u+f(x,u)非平凡多解存在性[J].数学年刊(A辑),2005,26(6):749-754. 被引量:12
  • 4CHANG S S. On the Convergence of Implicit Iterative Process with Error for a Finite Family of Asymptotically Nonex- pansive Mappings [J]. J Math Anal Appl, 2006, 313: 273-283.
  • 5BAUSCHKE H H. The Approximation of Fixed Points of Compositions of Nonexpansive Mappings in Hilbert Space [J]. J Math Anal Appl, 1996, 202: 150-159.
  • 6HALPERN B. Fixed Points of Nonexpansive Mappings [J]. Bull Amer Math Soc, 1967, 73:957-961.
  • 7SCHU J. Weak and Strong Convergence of Fixed Points of Asymptotaieally Nonexpansive Mappings[J]. Bull Austral Math Soc, 1991, 43: 153-159.
  • 8TAN K K, XU H K. Approximating Fixed Points of Nonexpansive Mappings by the Ishikawa Iterative Process [J]. J Math Anal Appl, 1993, 178: 301-308.
  • 9CHANG S S, CHO Y J, ZHOU H Y. Demi-Closed Principle and Weak Convergence Problems for Asymptotically Non- expansive Mappings [J]. J Korean Math Soe, 2001, 38: 1245-1260.
  • 10BREZIS H, NIRENBERG L. Positive Solutions of Nonlinear Elliptic Equations Involving Criticial Sobolev Exponents [J]. CommPureApplMath, 1983, 36: 437-477.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部