期刊文献+

指数时程差分与有理谱配点法求解奇异摄动Burgers-Huxley问题 被引量:2

THE EXPONENTIAL TIME DIFFERENCING AND RATIONAL SPECTRAL COLLOCATION METHOD FOR SINGULARLY PERTURBED BURGERS-HUXLEY PROBLEM
原文传递
导出
摘要 带小参数ε的Burgers-Huxley方程是一类非线性、非定常奇异摄动初边值问题,本文用指数时程差分与有理谱配点法求其数值解.对空间方向的边界层,用带sinh变换的有理谱配点法使Chebyshev节点在边界层处加密,只需取较少节点即可达到较高精度;时间方向采用指数时程差分与4阶Runge-Kutta法相结合的格式,并用围线积分计算矩阵函数的方法克服了求解奇异摄动问题时遇到的的数值不稳定难题.数值实验表明,本文提出的方法在求解左、右边界层和内部层的奇异摄动Bugers-Huxley问题都有较高的精度. The exponential time differencing (ETD) and rational spectral collocation (RSC) method are applied to numerically solve the Burgers-Huxley equation with small parameter ε, which is a nonlinear, unsteady, singularly perturbed, initial and boundary problem. The RSC method with sinh transform is employed to treat the boundary or interior layer in spatial direction while the combination of ETD and forth-order Runge-Kutta (ETDRK4) method is used to discretize the time variable. The matrix function in ETDRK4 is computed by contour integral in the complex plan, which overcomes the problem of instability. Numerical experiments illustrate the high accuracy and efficiency of our method.
机构地区 同济大学数学系
出处 《计算数学》 CSCD 北大核心 2010年第2期171-182,共12页 Mathematica Numerica Sinica
基金 国家自然科学基金(NO.10671146和NO.50678122)资助项目
关键词 指数时程差分法 有理谱配点法 奇异摄动 Burgers—Huxley问题 exponential time differencing method rational spectral collocation method singularly perturbation Burgers-Huxley problem
  • 相关文献

参考文献19

  • 1Ablowitz M,Fuchssteiner B,Kruskal M.Topics in Soliton Theory and Exactly Solvable Nonlinear Equations[M].World Scientific,Singapore,1987.
  • 2Burgers J M.A mathematical model illustrating the theory of turbulence[J].Adv.Appl.Mech.,1948,1:171-199.
  • 3Huxley A F.Muscle stvucture and theories of contraction[J].Prog Biophysics and Biophysical Chemistry,1957,7:255-318.
  • 4Yefimova O Yu,Kudryashov N A.Exact solutions of the Burgers-Huxley equation[J].Journal of Applied Mathematics and Mechanics,2004,68:413-420.
  • 5Tang Tao,Manfred R Trummer.Boundary layer resolving pseudospectral methods for singular perturbation problems[J].SIAM J.Sci.Comp.,1996,17:430-438.
  • 6Mulholland L S,Huang W,Solan D M.Pseudospectral solution of near-singular problems using numerical coordinate transformations based on adaptivity[J].SIAM J.Sci.Comput.,1998,19:1261-1289.
  • 7Baltensperger R,Berrut J P,Noel B.Expeonential convergence of a linear rational interpolant between transformed Chebyshev points[J].Math.Comput.,1999,68:1109-1120.
  • 8Berrut J P,Trefethen L N.Barycentric Lagrange interpolation[J].SIAM Rev.,2004,46:501-517.
  • 9Tee T W,Trefethen L N.A rational spectral collocation method with adaptively transformed Chebyshev grid points[J].SIAM J.Sci.Comp.,2006,28:1798-1811.
  • 10Cox S M,Matthews P C.Exponential time differencing for stiff systems[J].J.Comput.Phys.,2002,176:430-455.

同被引文献21

  • 1廖世俊.超越摄动--同伦分析方法导论[M].北京:科学出版社,2007.
  • 2Cole J D. On a quasi linear parabolic equation occuring in aerodynamics[J]. Quart Appl Math, 1951, 9(3): 225-236.
  • 3Hashim I, Noorani M S M, SaldA1-Hadidi M R. Solving the generalized Burgers-Huxley equation using the Adomian decomposition method[J]. Mathematical and Computer Modelling. 2006, 43(11- 12): 1404-1411.
  • 4Murat Sari,Giirhan Giirarslan.A sixth-order compact finite difference scheme to the numerical so- lutions of Burgers' equation[J]. Applied Mathematics and Computation. 2009, 208(2): 475-483.
  • 5Shu-Sen Xie,Sunyeong Heo,Seokchan Kim,et al.Numerical solution of one-dimensional Burgers' equation using reproducing kernel function[J]. Journal of Computational and Applied Mathematics. 2008, 214(2): 417-434.
  • 6Trgut Ozis,Ali Ozdes.A direct variational methods applied to Burgers' equation[J].Journal of Com- putational and Applied Mathematics. 1996, 71(2): 163-175.
  • 7Refik A, Bahadir, Mustafa Saglam. A mixed finite difference and boundary element approach to one-dimensional Burgers' equation[J]. Applied Mathematics and Computation, 2005, 160(3): 663- 673.
  • 8T.Ozis E N, Aksan A.Ozdes. Afinite element approach for solution of Burgers' equation[J]. Applied Mathematics and Computation, 2003, 139(2-3): 417-428.
  • 9E.N.Aksan, A.Ozdes. A numerical solution of Burgers' equation Applied[J]. Mathematics and Computation, 2004, 156(2): 395-402.
  • 10Abdulkadir Dogan. A Galerkin finite element approach to Burgers' equation[J]. Applied Mathe- matics and Computation, 2004, 157(2): 331-346.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部