期刊文献+

热电材料CoSi和CrSi_2的晶格热膨胀性

Lattice Thermal Expansion Properties of Thermoelectric Materials CoSi and CrSi_2
下载PDF
导出
摘要 利用动态高温X射线衍射技术分别对立方CoSi和六方CrSi2化合物在298-973K温度范围内的晶格热膨胀性进行了研究。结果表明:化合物CoSi的点阵参数随温度升高呈线性增长关系,其平均线热膨胀系数%和平均体热膨胀系数av分别为1.14×10^-5K^-1和3.42×10^-5K^-1,两者之间符合立方晶系关系式,即3aa=av;化合物CrSi2的点阵参数随温度升高而显著增大,其中沿a轴和c轴的平均线热膨胀系数及平均体热膨胀系数分别为aa=0.96×10^-5K^-1,ac=0.73×10^-6K^-1和av=2.45×10^-5K^-1,三者之间符合六方晶系关系式,即2aa+ac=av;化合物CrSi2沿a轴方向的线热膨胀系数远大于沿c轴方向的,呈较强的各向异性。 The lattice thermal expansion properties of compounds CoSi and CrSi2 were determined by means of dynamic high temperature X-ray diffraction(HTXRD) in the temperature range of 298-973 K. The results show that the lattice parameters of CoSi increase linearly with the increase of temperature. The average linear thermal expansion coefficient a. and average volume thermal expansion coefficient av of CoSi are 1.14×10^-5 K^-1 and 3. 42×10^-6 K^-1 , respectively, and they obey the law of 3 aa =av for cubic lattice. The lattice parameters of CrSi2 increase progressively with the increase of temperature. The average linear thermal expansion coefficients and average volume thermal expansion coefficient of CrSi2 are aa =0. 96×10^-5K^-1, ac=0. 73×10^-6 K^-1 and av = 2. 45×10^-5 K^-1, respectively, and they obey the law of 2 aa+ac=av for hexagonal lattice. The expansions of CrSi2 along a axis are much larger than that along c axis, so it appeared strong anisotropy.
出处 《理化检验(物理分册)》 CAS 2010年第6期343-347,共5页 Physical Testing and Chemical Analysis(Part A:Physical Testing)
基金 广西自然科学基金资助项目(0832027)
关键词 热电材料 点阵常数 晶格热膨胀性 高温X射线衍射 thermoelectric material lattice parameter lattice thermal expansion property high temperature X-ray diffraction (HTXRD)
  • 相关文献

参考文献14

  • 1LANGE H. Electronic properties of semiconducting silicides[J].Phys Status Solidi B, 1997, 201(1):3- 65.
  • 2MORONI E G, PODLOUCKY R, HAFNER J. Supersoft transition metal silicides[J]. Phys Rev Lett, 1998, 81: 1969-1972.
  • 3KIM S W, MISHIMA Y, CHOI D C. Effect of process conditions on the thermoelectric properties of CoSi[J].Intermetallics, 2002, 101 177-184.
  • 4SON J Y, OKAZAKI K, MIAZOKAWA T. Photomission study of the itinerant-electron helimagnet FexCo1-xSi[J].Phys Rev B, 2003, 68: 134447-1-4.
  • 5BARTH M, WEI B, HERLACH D M. Crystal growth in undereooled melts of the intermetallic compounds FeSi and CoSi[J]. Phys Rev B, 1995, 51: 3422-3428.
  • 6CAO Y, YI D Q, LU B. Ternary alloying of Mo5Si3 with Zr, Ti, Co and V[J]. Trans Nonferrous Met Soc China, 2001, 11(5):691-695.
  • 7TOKUSHIMA T, NISHIDA I, SAKATA K, et al. The CrSi2-CoSi thermomodule and its applications[J]. Mater Sci,1969, 4: 978-984.
  • 8PAN Z J, ZHANG L T, WU J S. Effects of V doping on the transport performances of CrSi2 single crystals [J]. Scrip Mater, 2007, 56: 257-260.
  • 9NISHIDA I, SAKATA T. Semiconducting properties of pure and Mn-doped chromium disilicides[J]. Phys Chem Solids, 1978,39 :499-505.
  • 10HOHL H, RAMIREZ A P, PALSTRA T T M, et al. Thermoelectric and magnetic properties of Cr1-xVxSisolid solutions [J ]. Alloys Comp, 1997, 248 : 70-76.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部