期刊文献+

基于pareto遗传算法的高等教育资源优化配置 被引量:3

下载PDF
导出
摘要 通常情况下,由于高等教育经济的正外部性使得高等教育资源配置不能实现pareto最优。教育与经济的直接关联,引发了诸多的经济学研究教育投资及投资效率的兴趣。许多实证分析表明教育的投入是可以通过计算产出来判断其价值的。根据pareto标准,设计了一个基于pareto最优概念的多目标遗传算法,利用群体搜索策略和群体间个体之间的信息交换在解决多目标优化问题上的两大优势,成功地实现利用pareto遗传算法进行高等教育资源优化配置的分析与计算,为最终达到高等教育资源配置的优化提供了一种技术手段。
出处 《科技管理研究》 北大核心 2010年第11期70-74,共5页 Science and Technology Management Research
基金 江西省教育厅科技项目"遗传算法在高等教育资源优化配置中的应用研究"(GJJ09295)
  • 相关文献

参考文献14

  • 1李纲,马费成,查先进.信息资源管理[M].武汉:武汉大学出版社,2001.
  • 2CHANKONG V, HAIMES Y Y. Multi objective decision making theory and methodology [M]. New York: North-Holland, 1983.
  • 3HANS A E. Multi criteria optimization for highly accurate systems [M]. New York: plenum press, 1988.
  • 4SRINIVAS N, DEB K,Multi objective Optimization Using Non - dominated Sorting in Genetic Algorithms [ J]. Evolutionary Computation, 1995, 2 (3): 221-248.
  • 5CHANKONG V , HAIMES Y Y. Multi - objective Decision Making: Theory and Methodology [ M ]. Amsterdam, The Netherlands, Elsevier, 1983.
  • 6谢涛,陈火旺,康立山.多目标优化的演化算法[J].计算机学报,2003,26(8):997-1003. 被引量:127
  • 7DEB K, AMRIT P, SAMEER A, etal. A Fast and Elitist Multi -objective Genetic Algorithm: NSGA - H [ J ]. IEEE Transactions on Evolutionary Computation , 2002, 62 : 182 - 197.
  • 8玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 9FONSECA C M, FLEMING P J. Genetic Algorithm Proceedings of the Fifth International Conference [ C]. San Mateo, 1993.
  • 10HORN J , NAFPLIOTIS N. Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence [C] . Piscataway , NJ : IEEE Service Center, 1994.

二级参考文献29

  • 1Charnes A, Cooper W W. Management Models and Industrial Applications of Linear Programming, Volume 1. New York:John Wiley, 1961.
  • 2Ijiri Y. Management Goals and Accounting for Control. Amsterdan: North Holland, 1965.
  • 3Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design. Structural Optimization, 1992, 4 : 99 - 107.
  • 4Chen Y L, Liu C C. Multiobjective VAR planning using the goal-attainment method, IEE Proceedings on Generation,Transmission and Distribution, 1994,141 (3) :227 -232.
  • 5Coello C A C, Christiansen A D, Aguirre A H. Using a new GA- based multiobjective optimization technique for the design of robot arms. Robotica, 1998,16:401-414.
  • 6Fujita K, Hirokawa N, Akagi S, Kitamura S, Yokohata H.Multi-objective optimal design of automotive engine using genetic algorithm. In: Proceedings of DETC'98-ASME Design Engineering Technical Conferences, 1998.
  • 7Cvetkovic D, Parmee I C. Genetic algorithm-based multi-objective optimization and conceptual engineering design, Washington DC, 1999. 29-36.
  • 8Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms-a comparative case study. In: Eiben A E.Back T, Schoenauer M, Schwefel H P eds. Parallel Problem Solving from Nature, Berlin, Germany: Springer, 1998. 292-301.
  • 9Knowles J, Corne D. The Pareto archived evolution strategy:A new baseline algorithm for multiobjective optimization. In:Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC, 1999. 98-105.
  • 10Coello C A C, Christiansen A D. Two new GA- based methods for multiobjective optimization. Civil Engineering Systems,1998, 15(3) :207-243.

共引文献518

同被引文献28

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部