期刊文献+

基于Elitism的改进免疫遗传算法应用研究 被引量:1

Study on Improved Immune-genetic Algorithm Based on the Elitism
下载PDF
导出
摘要 研究遗传算法等经典算法存在早熟、收敛速度慢等问题,针对上述问题,提出了新的抗体相似度、期望繁殖率以及克隆选择概率的定义及算法,结合Elitism策略提出了免疫遗传算法并建立了数学模型。抗体的相似度和期望繁殖率在进化过程中可以动态调整,以平衡群体的多样性和算法的收敛速度,采用了Elitism策略,保证算法收敛到全局最优解,选用PID控制进行仿真实验,通过与其他经典算法比较,结果表明算法具有一定的可行性。 GA has some drawbacks such as easily getting trapped and the convergence speed is slow. Aiming at these problems, a new definitions and formulas of antibody similarity, expected reproduction probability, and selection probability are proposed. Based on these definitions and the elitism strategy, a novel immune - genetic algorithm is presented, which is called the immune genetic algorithm with elitism (IGAE). IGAE has two important properties. The similarity and expected reproduction probability of antibody can be adjusted dynamically in the evolutionary process of the antibody population to balance the diversity of the population and the convergence speed of the algo- rithm, which helps the algorithm find the high quality solutions rapidly. The algorithm is able to find the globally optimal solution because of the use of elitism strategy. Based on the PID control, compared with other algorithms, it shows that this method is feasibility.
出处 《计算机仿真》 CSCD 北大核心 2010年第6期230-233,243,共5页 Computer Simulation
关键词 遗传算法 精英选择策略 免疫遗传算法 Genetic algorithm(GA) Elitism plot Immune- genetic algorithm
  • 相关文献

参考文献8

  • 1Yuji Watanabe, Akio Ishiguro, Yoshiki Uehikawa. Decentralized Behavior Arbitration Mechanism for Autonomous Mobile Robot Using Immune Network In Artificial Immune Systems and their Applications[ J]. Dasgupta D. (ed.), Springer Verlag, 1998. 187-209.
  • 2Toyoo Fukuda, Kazuyuki Mori and Makoto Tsukiyama. Parallel Search for Multi - Modal Function Optimization with Diversity and Learning of Immune Algorithm [ J ]. In Artificial Immune Systems and Their Applications, Dipankar Dasgupta ( Ed. ), Springer, 1998. 210 -220.
  • 3Dipankar Dasgupta and Hal Brian. Mobile Security Agents for Network Traffic Analysis [ J ]. IEEE 0 - 7695 - 1212 - 7/01 , 2001. 332 - 340.
  • 4何琳,王科俊,李国斌,金鸿章.最优保留遗传算法及其收敛性分析[J].控制与决策,2000,15(1):63-66. 被引量:57
  • 5王伟,张晶涛,柴天佑.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-355. 被引量:524
  • 6S L Cheng, C Hwang. Designing PID controllers with a minimum IAE eriterion by a differential evolution algoritllnl [ J ]. Chemieal Engineering Communications, 1998.83 - 115.
  • 7D Bhandari, C A Murthy and S K Pal. Genetic algorithm with elitist model and its convergence[ J]. International Journal of Pattern Recognition and Artificial Intelligence, 1996,10 (6) :731 - 747.
  • 8D P Kwok, F Sheng. Genetic algorithm and simulated annealing for optimal robot ann PID control [ C ]. in proceedings of the First IEEE Conference on Evolutionary Computation, Orlando,FL USA, June27 - 29,1994. 707 - 713.

二级参考文献7

共引文献579

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部