期刊文献+

三维非定常扩散方程的虚边界元法

VIRTUAL BOUNDARY ELEMENT METHOD FOR 3-D UNSTEADY DIFFUSION EQUATION
原文传递
导出
摘要 根据位势问题虚边界元法的基本思想,结合扩散方程与时间有关的基本解,提出了针对单层热势的三维非定常扩散方程虚边界元-配点法的一个具体实施方案.该方法既保留了边界元法的优点,也避免了传统边界元法中时间和空间上的奇异积分计算,采用较少的边界单元即可达到较高的精度.算例表明此方法的有效性和可行性,不过虚实边界比例选取范围比虚边界元方法应用于椭圆型问题时狭窄很多,对此本文进行了探讨,但还应继续从理论上加以论证. Based on the virtual boundary element method (VBEM) for potential theory and time- dependent fundamental solution of diffusion equations, an implementation of VBEM- colla- tion method for 3-D unsteady diffusion equation is proposed. VBEM not only retains the advantages of boundary element method, but also avoids singular integration or nearly sin- gular integration. High accuracy and efficiency have been observed just with a small number of boundary elements in the method. Several test problems have been examined, and the results are in excellent agreement with available analytical solutions. In addition, the choos- ing range of distance between the real boundary and the virtual boundary is investigated, which is narrower than VBEM applied in elliptic problems.
出处 《数值计算与计算机应用》 CSCD 北大核心 2010年第2期99-107,共9页 Journal on Numerical Methods and Computer Applications
关键词 虚边界元 配点法 单层热势 非定常扩散方程 virtual boundary element method collation method single layer potential unsteady diffusion equation
  • 相关文献

参考文献11

  • 1闫富有,宁祎.三维复杂区域瞬态热传导边界元分析[J].成组技术与生产现代化,2000,17(2):42-45. 被引量:1
  • 2孙焕纯,杨海天,吴京宁,杨贺先.虚边界元法的应用及其求解方法[J].应用力学学报,1994,11(1):28-36. 被引量:12
  • 3Gar Burgess,Enayat Mahajerin.A comparison of the boundary element and superposition methods[J].Computers and Structures,1984,19(5):697-705.
  • 4吴约,王左辉,王有成.全特解场边界点法[J].安徽建筑工业学院学报(自然科学版),1998,0(2):41-43. 被引量:2
  • 5Young D L,Tsai C C,Murugesan K,Fan C M,Chen C W.Time-dependent fundamental solutions for homogeneous diffusion problems[J].Engineering Analysis with Boundary Elements,2004,28:1463-1473.
  • 6Young D L,Tsai C C,Chen C W,Fan C M.The method of fundamental solutions and condition number analysis for inverse problems of Laplace equation[J].Computers and Mathematics with Applications,2008,55:1189-1120.Journal of computational physics,1995,118:208-221.
  • 7Young D L,Jane S J,Fan C M,Murugesan K,Tsai C C.The method of fundamental solutions for 2D and 3D Stokes problems[J].Journal of Computational Physics,2006,211:1-8.
  • 8Xin Lin.On convergence of the method of fundamental solutions for solving the Dirichlet problem of Poisson's equation[J].Advances in computational Mathematics,2005,23,265-277.
  • 9Julieta Antonio,Antonio Tadeu,Luis Godinho.A three-dimensional acoustics model using the method of fundamental solutions[J].Engineering Analysis with Boundary Elements,2008,32,525-531.
  • 10布瑞比亚C.A.Brebbia,泰勒斯J.C.F,诺贝尔L.C著,龙述尧,刘腾喜,蔡松柏译.边界单元法的理论和工程应用[M].北京:国防工业出版社,1988:183-213.

二级参考文献24

  • 1王左辉.薄板弯曲问题的非奇异核边界元法[J].应用数学和力学,1993,14(8):729-738. 被引量:6
  • 2王有成,刘钊,吴约.边界元技术中的全特解场方法[J].力学学报,1995,27(4):451-458. 被引量:20
  • 3阿部博之,関根英樹,渋谷嗣.地殼深部乾燥高温岩体中の熱交换のための地下人工亀裂の安定形状[J].日本鉱業会誌,1983,99(4):433-436.
  • 4[2]Bazant Z P, Ohtsubo H. Geothermal heat extraction by water circulation through a large crack in dry hot rock mass[J]. Int. J. Num.Analy. Methods Geotech., 1978, (2): 317
  • 5[3]Carslaw H S, Jaeger J C. Conduction of Heat in Solids[M]. Oxford:Clarendon Press, 1986
  • 6[4]神谷纪生ら(共訳).境界要素の基礎と応用[M].东京:培風館,1982
  • 7[5]劉承論.高温岩体発電设計に资するための 3次元境界要素法による熱伝導·弹性解析に関する研究[博士学位論文][D].日本:山口大学,2000
  • 8[6]Cowper G R. Gaussian quadrature formulas for triangles[J]. Int. J.Num. Mech. Engng., 1973, 7(3): 405~408
  • 9许永林,计算结构力学及其应用,1986年,3卷,2期
  • 10西田正孝,应力集中,1986年

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部